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Lecture No. One

Introduction To Control

System

This lecture discusses the following topics :

1.1 Introduction.

1.2 Open Loop System.

1.3 Close Loop System.

1.4 - Definitions of control system.

1.5 The engineering control problem.
1.6 Solved Examples

1.7 Problems
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1.1. Introduction:

The toaster in Fig.1.1 can be set for the desired darkness of the toasted bread.
The setting of the ‘‘darkness’” knob, or timer, represents the input quantity,
and the degree of darkness and crispness of the toast produced is the output
quantity. If the degree of darkness is not satisfactory, because of the condition
of the bread or some similar reason, this condition can in no way
automatically alter the length of time that heat is applied. Since the output
quantity has no influence on the input quantity, there is no feedback in this
system. The heater portion of the toaster represents the dynamic part of the

overall system, and the timer unit is the reference selector.

Desired toast
"Darkness setting"

Fig. 1.1 Open-loop control system automatic toaster

The dc shunt motor of Fig. 1.2 is another example. For a given value of field
current, a required value of voltage is applied to the armature to produce the
desired value of motor speed. In this case the motor is the dynamic part of the
system, the applied armature voltage is the input quantity, and the speed of the
shaft is the output quantity. A variation of the speed from the desired value,
due to a change of mechanical load on the shaft, can in no way cause a change
in the value of the applied armature voltage to maintain the desired speed.

Therefore, the output quantity has no influence on the input quantity.
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1.2. Open Loop System:

Systems in which the output quantity has no effect upon the input quantity are
called open-loop control systems. The examples just cited are represented
symbolically by a functional block diagram, as shown in Fig. 1.2.C. In this
figure, (1) the desired darkness of the toast or the desired speed of the motor is
the command input, (2) the selection of the value of time on the toaster timer
or the value of voltage applied to the motor armature is represented by the
reference-selector block, and (3) the output of this block is identified as the
reference input. The reference input is applied to the dynamic unit that
performs the desired control function, and the output of this block is the

desired output.

Voltage selector Voltage source for the field

DC motor

(@)
Command Reference Reference Dynamic Output R
input selector input unit -
(D)

Fig. 1.2. Open-loop control system (a) electric motor; (b) functional block
diagram.
A person could be assigned the task of sensing the actual value of the output

and comparing it with the command input. If the output does not have the
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desired value, the person can alter the reference-selector position to achieve
this value. Introducing the person provides a means through which the output
Is feedback and is compared with the input. Any necessary change is then
made in order to cause the output to equal the desired value.

1.3. Close Loop System:

The feedback action therefore controls the input to the dynamic unit. Systems
in which the output has a direct effect upon the input quantity are called closed
loop control systems. To improve the performance of the closed-loop system
so that the output quantity is as close as possible to the desired quantity, the
person can be replaced by a mechanical, electrical, or other form of a
comparison unit. The functional block diagram of a single-input single-output
(SISO) closed-loop control system is illustrated in Fig. 1.3. Comparison
between the reference input and the feedback signals results in an actuating
signal that is the difference between these two quantities. The actuating signal
acts to maintain the output at the desired value. This system is called a closed-
loop control system..

Reference Actuating ; Syster_n
input signal \/ dynamics

A Forward Output

Command Reference

input selector Elements >
Feedback .....>
signal
Feedback |
element [

Fig. 1.3. Functional block diagram of a closed-loop system
The designation closed-loop implies the action resulting from the comparison

between the output and input quantities in order to maintain the output at the
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desired value. Thus, the output is controlled in order to achieve the desired
value.

Examples of closed-loop control systems are illustrated in Figs. 1.4&1.5 . In a
home heating system the desired room temperature (command input) is set on
the thermostat in Fig.1.4. (reference selector).A bimetallic coil in the
thermostat is affected by both the actual room temperature (output) and the
reference-selector setting. If the room temperature is lower than the desired
temperature, the coil strip alters its shape and causes a mercury switch to
operate a relay, which turns on the furnace to produce heat in the room.

When the room temperature reaches the desired temperature, the shape of the
coil strip is again altered so that the mercury switch opens. This deactivates
the relay and in turn shuts off the furnace. In this example, the bimetallic coil
performs the function of a comparator since the output (room temperature) is
fed back directly to the comparator. The switch, relay, and furnace are the
dynamic elements of this closed-loop control system.

A closed-loop control system of great importance to all multistory buildings is
the automatic elevator of Fig.1.5. A person in the elevator presses the button
corresponding to the desired floor. This produces an actuating signal that
indicates the desired floor and turns on the motor that raises or lowers the
elevator. As the elevator approaches the desired floor, the actuating signal
decreases in value and, with the proper switching sequences, the elevator stops
at the desired floor and the actuating signal is reset to zero. The closed loop
control system for the express elevator in the Sears Tower building in Chicago
Is designed so that it ascends or descends the 103 floors in just underlmin

with maximum passenger comfort.
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manipulated
controller error controller output, CO fuel flow house
e(t) = (SP- PV) signal to furnace valve to furnace temperature
~ ~ \ \
\ \ \ \
: > »| Fuel —— oricess >
(desired temp) & Controller Valve
o : disturbances
measured temperature (heat loss from home)
process variable signal, PV
Temperature
Sensor/Transmitter

Fig.1.4. Home heating block diagram control system.
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Fig. 1.5. Automatic elevator.
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1.4. Definitions of control system.

From the above description there are many terms can be defined as:

Control Theory: It is that part of science which concern control problems.
Control Problem: If we want something to act or vary according to a certain
performance specification, then we say that we have a control problem. Ex.
We want to keep the temperature in a room at certain level and as we order,
then we say that we have temperature control problem.

Plant: A piece of equipment’s the purpose of which is to perform a particular
operation (we will call any object to be controlled a plant). Ex. Heating
furnace, chemical reactor or space craft.

The system: A combination of components that act together to perform a
function not possible with any of the individual parts. The word system as
used herein is interpreted to include physical, biological, organizational, and
other entities, and combinations thereof, which can be represented through a
common mathematical symbolism. The formal name systems engineering can
also be assigned to this definition of the word system. Thus, the study of
feedback control systems is essentially a study of an important aspect of
systems engineering and its application.

Process: Progressively continuing operation or development marked by a
series of gradual changes that succeed one another in a relatively fixed way
and lead towered a particular results or end. In this lectures we call any
operation to be controlled a process.

Reference selector (reference input element): The unit that establishes the
value of the reference input. The reference selector is calibrated in terms of the

desired value of the system output.

11
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Reference input: The reference signal produced by the reference selector, i.e.,
the command expressed in a form directly usable by the system. It is the actual
signal input to the control system.

Disturbance input: An external disturbance input signal to the system that has
an unwanted effect on the system output.

Forward element (system dynamics): The unit that reacts to an actuating
signal to produce a desired output. This unit does the work of controlling the
output and thus may be a power amplifier.

Output (controlled variable): The quantity that must be maintained at a
prescribed value, i.e., following the command input without responding the
disturbance inputs.

Open-loop control system: A system in which the output has no effect upon
the input signal. Ex. heater, light, washing machine.

Feedback element: The unit that provides the means for feeding back the
output quantity, or a function of the output, in order to compare it with the
reference input.

Actuating signal: The signal that is the difference between the reference input
and the feedback signal. It is the input to the control unit that causes the output
to have the desired value.

Closed-loop control system: A system in which the output has an effect upon
the input quantity in such a manner as to maintain the desired output value.
The fundamental difference between the open- and closed-loop systems is the
feedback action, which may be continuous or discontinuous. In one form of
discontinuous control the input and output quantities are periodically sampled
and discontinuous. Continuous control implies that the output is continuously

feedback and compared with the reference input compared; i.e., the control

12
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action is discontinuous in time. This is commonly called a digital, discrete-
data or sampled-data feedback control system. A discrete data control system
may incorporate a digital computer that improves the performance achievable
by the system. In another form of discontinuous control system the actuating
signal must reach a prescribed value before the system dynamics reacts to it;
I.e., the control action is discontinuous in amplitude rather than in time. This
type of discontinuous control system is commonly called an on-off or relay
feedback control system. Both forms may be present in a system. In this text
continuous control systems are considered in detail since they lend themselves
readily to a basic understanding of feedback control systems. With the above
introductory material, it is proper to state a definition of a feedback control
system: ‘‘A control system that operates to achieve prescribed relationships
between selected system variables by comparing functions of these variables
and using the comparison to effect control.”” The following definitions are
also used.

Servomechanism (often abbreviated as servo): The term is often used to refer
to a mechanical system in which the steady-state error is zero for a constant
input signal. Sometimes, by generalization, it is used to refer to any feedback
control system.

Regulator. This term is used to refer to systems in which there is a constant
steady-state output for a constant signal. The name is derived from the early

speed and voltage controls, called speed and voltage regulators.

13
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Major advantages of open loop control system:

1. Simple construction and ease of maintenance.

2. Less expensive than the corresponding closed loop system.

3. There is no stability problem.

4. Convenient when output is hard to measure or economically not
feasible.

The disadvantages of open loop control systems are as follows:

1. Disturbances and changes in calibration cause errors and the output may
be different from what is desired.

2. To maintain the required quality in the output, recalibration is necessary
from time to time.

1.5. The engineering control problem:
In general, a control problem can be divided into the following steps:

1. A set of performance specifications is established.

2. The performance specifications establish the control problem.

3. A set of linear differential equations that describe the physical system is
formulated or a system identification technique is applied in order to
obtain the plant model transfer functions.

4. A control-theory design approach, aided by available computer aided-
design (CAD) packages or specially written computer programs,
involves the following:

a. The performance of the basic (original or uncompensated) system is
determined by application of one of the available methods of

analysis (or a combination of them).

14
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b. If the performance of the original system does not meet the required
specifications, a control design method is selected that will improve
the system’s response.

c. For plants having structured parameter uncertainty, the quantitative
feedback theory (QFT) design technique may be used. Parametric
uncertainty is present when parameters of the plant to be controlled
vary during its operation.

5. A simulation of the designed nonlinear system is performed.

6. The actual system is implemented and tested.

Design of the system to obtain the desired performance is the control problem.
The necessary basic equipment is then assembled into a system to perform the
desired control function. Although most systems are nonlinear, in many cases
the nonlinearity is small enough to be neglected, or the limits of operation are
small enough to allow a linear analysis to be used. This textbook considers
only linear systems. A basic system has the minimum amount of equipment
necessary to accomplish the control function. After a control system is
synthesized to achieve the desired performance, final adjustments can be made
in a simulation, or on the actual system, to take into account the nonlinearities
that were neglected. A computer is generally used in the design, depending
upon the complexity of the system. The essential aspects of the control system
design process are illustrated in Fig.1.6. Note: The development of this figure
Is based upon the application of the QFT design technique. A similar figure
may be developed for other design techniques. The intent of (Fig.1.6) is to
give the reader an overview of what is involved in achieving a successful and

practical control system design.

15
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Finally the following design policy includes factors that are worthy of
consideration in the control system design problem:
1. Use proven design methods.
2. Select the system design that has the minimum complexity.
3. Use minimum specifications or requirements that yield a satisfactory
system response. Compare the cost with the performance and select the
fully justified system implementation.

4. Perform a complete and adequate simulation and testing of the system.

16
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This is the problem statement

Included are the operational

goals of the controlled system
and its operating environment

Performance Specifications Dynamics Model
These arc the mathematical

Mathematical model
expressions which represent the of the system 1o be
functional requirements

controlled

Control Authority Allecation
Algorithm to optimize the use of
control cffectors for efficiency and
decoupling

Produces control algorithms for
test and implementation

Successful
Control Design

5 @'"“' Nichols D
Linear Simulation )
Implement and test candidate control '

algorithm using Simplified Dynamics 2 T . k ‘

Robust Stability, performance,
and disturbance boundaries as a
function of frequency

Tryout of controlled system
under actual operating conditions

Imbedded Performance
Specifications

Human-in-the-Loop Simulation
*Visual cues
*Moving basc

*Nonlinear Functions
*Nonlinear Dynamics

Abllity to manipulate
closed-loop response as a
function of frequency

Concurrent Bode
Plots, open and
closed-loop

Used to better understand results .
of simulations and System tests avr? e
*Real-time operation of control algorithm

e Design can be broken
*Noise cormupted measurements available

down by open or closed-
+User supplies commands and then can : iz for feedback

leop operating condition

react to resulting dynamic behavior s ' #1 +Computation cycle time/Sampling Rate
*Gives a better understanding of control : B8 *Quantization Error, Warping

system operation

Hardware-in-the-Loop

Fig. 1.6. A control system design process: bridging the gap [ ref 2].
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1.6. Solved Examples

Example 1: Fig.1.7.a. is a schematic diagram of a liquid level control system.
Here the automatic controller maintains the liquid level by comparing the
actual level with the desired level and correcting any error by adjusting the
opening of pneumatic valve. Fig.1.7.b. is the corresponding block diagram of

the control system.

Pneumatic
valvg @ Controller
Inflow
>~
i i Water
Desired Controller »| Pneumatic > K Actual
level valve tan level
A
Feedback |
element
-b-

Fig.1.7. (a) Liquid level control system,(b) corresponding block diagram

To draw the block diagram for a human operated liquid level as an example of
closed loop control system we will need the following parts (see Fig. 1.8):
1. Eyes as a sensor . 2. Brain as a controller

3. Muscles as a pneumatic valve as in the following block diagram

18
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Desired Brain .| Muscles | Water Actual
eve "| Andvalve i tank level
A
Eyes <

Fig.1.8. Block diagram of human operated liquid level control system

Example 2. An engineering organization system is composed of major groups
such as management, research and development, preliminary design,
experiment, product design and drafting, fabrication and assembling and
testing. These groups are interconnected to make up the whole operation. The
system may be organized by reducing it to the most elementary set of
components necessary that can provide the analytical detail required and by
representing the dynamic characteristics of each component by a set of simple
equations. The functional block diagram of the engineering organization can

be illustrated as in the block diagram is shown in Fig. 1.9.

Required Research Preliminary Product Fabrication
—203 Management —» And = Ly| Experiments

i Product
design designand [~ and [ |  Testing .
Development

drafting assembling

Fig.1.9. Block Diagram of an engineering organization system
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Problems

Give two examples of feedback control systems in which a human acts

as a controller?

Explain the open-loop control system by functional diagram and

describe the blocks by practical example?

Explain the closed-loop system by functional block diagram and
compared it with open-loop control system?

Many closed-loop and open-loop control systems may be found in
homes. List several examples and describe them?

Draw the general block diagram of control system and explain each
block in the sketch?

20
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Lecture No. Two

Mathematical
Representation of Physical

Systems

This lecture discusses the following topics :
2.1. Introduction:
2.2. Electrical system.
2.3. Multiloop Electric Circuits.
2.4. State Space Concepts (S.S)

2.5. Transfer Function (T.F):

2.6. Correlation between transfer functions and state-space equations.
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2.7. Transfer Function From State-Variable Representation:
2.8. State Variable Representation From Transfer Function:
2.9. Properties of the State Transition Matrix:

2.10. Complex impedances.

2.11. Transfer function of nonloading cascaded system.

2.12. Mecanical Systems.

2.12.1. Translational mechanical systems

2.12.2. Rotational mechanical systems
2.13. Liquid systems.
2.14. Thermal systems.
2.15. Extra systems

2.15.1. Gear trains

2.15.2. Potentiometer

2.15.3. Error Detector

2.15.4. First-Order Op-Amp
2.16. Simulation diagram

Prof.Dr-

Yousif AL Mashhaaany
U. O- Anbar
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2.1. Introduction:

e Mechanical, electrical, thermal, hydraulic, economic, biological, etc,
systems, may be characterized by differential equations.

eThe response of dynamic system to an input may be obtained if these
differential equations are solved.

eThe differential equations can be obtained by utilizing physical laws
governing a particular system, for example, Newton's laws for mechanical
systems, Kirchhoff's laws for electrical systems, etc.

Mathematical models: The mathematical description of the dynamic
characteristic of a system. The first step in the analysis of dynamic system is
to derive its model. Models may assume different forms, depending on the
particular system and the circumstances. In obtaining a model, we must make
a compromise between the simplicity of the model and the accuracy of results

of the analysis.

Transfer functions: The transfer function of a linear time-invariant system is
define to be the ratio of the Laplace transform ( z transform for sampled data
systems) of the output to the Laplace transform of the input (driving function),

under the assumption that all initial conditions are zero.

Example: Consider the linear time-invariant system

agy™ +a1y(n_1) +ot8p Y +anY :box(m) +b1x(m_1) +o D X +bmXx ,n=m

Taking the Laplace transform of y(t)

1aoy ™) =a,1(y™) =, [s™ (5) - 8" “Ly(©) - 5"~ 2y (@) -..... -y Do)
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#ayy ") =ayy () =ag 18" Y (5) - " 2y(0) - 5" 3y (0) - -y 1D ()
@,y Dy =auy(" =2y =a,[s"2v(5)-5" 3y (0) -S4y (0)-... -y "D 0).

g(an y) = anf(y) 7 anY (S)

same thing is applied to obtain the L.T. of x(t).by substitute all initial

condition to zero. The transfer function of the system become.

Transfer function =G(s) = (2.1)

e Transfer function is not provide any information concerning the physical
structure of the system (the T.F. of many physically different system can be

identical).

e The highest power of s in the denominator of T. F. is equal to the order of
the highest derivative term of the output. If the highest power of s is equal to n

the system is called an nth order system.
How you can obtain the transfer function (T. F.)?
1- Write the differential equation of the system

2- Take the L. T. of the differential equation, assuming all initial condition to

be zero.

3- Take the ratio of the output to the input. This ratio is the T. F.
24
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In general, variables that are functions of time are represented by lowercase
letters. These are sometimes indicated by the form x(t ), but more often this is
written just as X. There are some exceptions, because of established
convention, in the use of certain symbols. To simplify the writing of

differential equations. The symbols D and1/D are defined by:

Dyz%,Dzys—ddﬁt) (2.2)
D1y z% y=[ty@dr+°_y@dr =] y(r)dz Y, (2.3)

where Yo represents the value of the integral at time t = 0, that is, the initial

value of the integral.

2.2. Electrical system:

For the series RLC circuit shown in Fig.2.1,

a +"~£\r b
4 +
e(t) H}H} L
- C
b -
/1 +

Fig.2.1. Series Resistor—Inductor—Capacitor Circuit

the applied voltage is equal to the sum of the voltage drops when the switch

is closed:

V, +Viy +V =e (2.4)
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LDi+Ri+ii:e (2.5)
CD

The circuit equation can be written in terms of the voltage drop across any
circuit element. For example, in terms of the voltage across the resistor, VR =
Ri, the equation become:

L 1
EDVR +VR +R(:—DVR =e (26)

For LRC circuit in Fig.2.2.

. L R
; + - % i
By 77 Sl A7 S AR
. |
S im) e
. —

Fig.2.2. Series Resistor—Inductor—Capacitor Circuit

Applying Kirchhoff’s voltage law to the system shown. We obtain the
following equation;

di R
Laﬁ' Ri +E'|.|dt:ei (27)
L [t 2.8
= fidt=e, (2.8)

Above two equations give a mathematical model of the circuit. Taking the

L.T. of equations, assuming zero initial conditions, we obtain:

26
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LSI(S)+ RI(S)+%I(S)= E. (S) (2.9)
L is)=E.(9) (2.10)
cs '

The final transfer function of the series RLC circuit will be as in the following

equation :

E,(S) _ 1
E,(S LCS?+RCS+1

(2.11)

2.3. Multi loop Electric Circuits

Multi loop electric circuits (see Fig.2.3) can be solved by either loop or nodal

equations.

i {'o.{ 1)

el(t) bl C i
./ y T )

Fig.2.3. Multi loop network

The following example illustrates both methods. The problem is to solve for
the output voltage Vo.

Loop Method: A loop current is drawn in each closed loop (usually in a
clockwise direction); then Kirchhoff ’s voltage equation is written for each

loop:

27
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1 .. . 1.
(Rl +a)ll - Rll2 _als =€

-Rji, +(R, +R, +LD)i, —R,i, =0

1. : 1.
—C—D|1—R2|2+(R2+R3+C—D)|3:O
The output voltage is Vo=R3 i3 These four equations must be solved
simultaneously to obtain Vo(t) in terms of the input voltage e(t) and the circuit

parameters.

Node Method: The junctions, or nodes, are labeled by letters in Fig.2.4.
Kirchhoff’s current equations are written for each node in terms of the node
voltages, where node d is taken as reference. The voltage Vyq is the voltage of

node b with reference to node d. For simplicity, the voltage Vyq IS Written just

as Vp.
L
/U
-} ff] Jj:'z Rz *tls T
.-m(i) T(‘ %1{3 olf)
-~ !
o ’ ‘
Fig.2.4. Multi node network
I, +i,+i,=0
—i,+1, +i;, =0
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Since there is one known node voltage Va=e two unknown voltages Vb and

Vo, only two equations are required:
For node b and node c:
In terms of the node voltages, these equations are:

vb _Va Vb _VO

—2+CDV, + =0
1 2
Yo=Vo | Vo, +i(v0 —e)=0
R, R, LD

Rearranging the terms in order to systematize the form of the equations gives:

(i+CD+i)Vb > Bl

R, R, R, R,
ivb +(i+i+i)vo zi
R, LD R, R, LD

For this example, only two nodal equations are needed to solve for the
potential at node c. An additional equation must be used if the current in R3 is
required. With the loop method, three equations must be solved
simultaneously to obtain the current in any branch; an additional equation
must be used if the voltage across R3 is required. The method that requires the

solution of the fewest equations should be used. This varies with the circuit.
The rules for writing the node equations are summarized as follows:

1. The number of equations required is equal to the number of unknown node

voltages.
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2. An equation is written for each node.
3. Each equation includes the following:

(@) The node voltage multiplied by the sum of all the admittances that are

connected to this node. This term is positive.

(b) The node voltage at the other end of each branch multiplied by the

admittance connected between the two nodes. This term is negative.
2.4. State Space Concepts:

Basic matrix properties are used to introduce the concept of state and the

method of writing and solving the state equations.

State: The state of a system is a mathematical structure containing a set of n
variables x1(t ), x2(t ), . .., xi(t ), . .., xn(t ), called the state variables, such
that the initial values xi(to) of this set and the system inputs uj(t ) are sufficient
to describe uniquely the system’s future response of ¢ > fo. A minimum set of
state variables is required to represent the system accurately. The m inputs,
ul(t), u2(t),...,uj(t),...,um(t), are deterministic; i.e., they have specific

values for all values of time ¢ > fo.

Generally the initial starting time to is taken to be zero. The state variables
need not be physically observable and measurable quantities; they may be
purely mathematical quantities. The following additional definitions apply:
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State Vector: The set of state variables xi(t) represents the elements or
components of the n-dimensional state vector x(t); that is,
xO] [x

X ()] X%
X(0) =| X3(1) [=] X,

1l
>

(2.12)

%0 |

The order of the system characteristic equation is n, and the state equation
representation of the system consists of n first-order differential equations.
When all the inputs uj (t) to a given system are specified for t> to, the

resulting state vector uniquely determines the system behavior for any t > to.

State Space: State space is defined as the n-dimensional space in which the

components of the state vector represent its coordinate axes.

State Trajectory: State trajectory is defined as the path produced in the state
space by the state vector x(t) as it changes with the passage of time. State
space and state trajectory in the two-dimensional case are referred to as the

phase plane and phase trajectory, respectively.

The first step in applying these definitions to a physical system is the selection

of the system variables that are to represent the state of the system.

Note that there is no unique way of making this selection. The three common
representations for expressing the system state are the physical, phase, and

canonical state variables.

The selection of the state variables for the physical-variable method is based

upon the energy-storage elements of the system. Table 1 lists some common
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energy-storage elements that exist in physical systems and the corresponding
energy equations. The physical variable in the energy equation for each
energy-storage element can be selected as a state variable of the system. Only

independent physical variables are chosen to be state variables.

Independent state variables are those state variables that cannot be expressed
in terms of the remaining assigned state variables. In some systems it may be
necessary to identify more state variables than just the energy-storage
variables. This situation is illustrated in some of the following examples,
where velocity is a state variable. When position, the integral of this state

variable, is of interest, it must also be assigned as a state variable.

For the circuit of Series RLC Circuit (Fig.2.2). This circuit contains two
energy-storage elements, the inductor and capacitor. From Table 1, the two
assigned state variables are identified as x1=Vc (the voltage across the
capacitor) and x2=i (the current in the inductor). Thus two state equations are

required.

Fig 2.3 is redrawn in Fig. 2.4 with node b as the reference node. The node

equations for node a and the loop equations are, respectively,
Cx =X,
Lx, +RX, + X, =u

Rearranging terms to the standard state equation format yields:
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X :lx
- C 12 (2.13)
X, __EX1 —X,+—U
Table 2.1.Energy storage elements
System Elemnet Energy Physical variable
. Cv?
Capacitor (C) v Voltage (V)
. 2
Electrical ~
Inductor (L) % Current (i)
2 Translational velocity
Mass (M) ore
2 (V)
i O Jw? : :
Mechanical | Moment of inertia (J) — Rotational velocity (w)
2
Spring (K) KTx Displacement (x)
Fluid compressibility 2
VP;
v i Pressure (P.)
Fulid (ks >
2
Fluid capacitor C=pA P Azh Height (h)
: CoH?
Thermal Thermal capacitor C — Temperature (O)

Equation (2.13) represents the state equations of the system containing two

independent state variables. Note that they are first-order linear differential

equations and are n=2 in number. They are the minimum number of state

equations required to represent the system’s future performance.
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State equation. The state equations of a system are a set of n first-order

differential equations, where n is the number of independent states.

The state equation represented by Eq(2.12)is expressed in matrix notation as:

MIEEA A -

The standard form of the state space equation is:

X =Ax+Bu

In this case ,the matrix A which is the system matrix will be :

0 1/C . .
A= , nxn plant coefficient matrix
-1/L —R/L

Matrix B ,which is input matrix will be :

0
B=| 1], nx1 control matrix

L
and, in this case, u=[u] is a one-dimensional control vector.

In (X =Ax+Bu), matrix A and x are conformable. If the output quantity y(t)
for the circuit of Fig.8 is the voltage across the capacitor vc, then

y(t) = Vc = Xl

Thus the matrix system output equation for this example is:
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y(t)=Cx +Du=[1 0][);12}+[0]u (2.15)
Where : C is the output matrix with 1xn dimension for single input single
output system (S1SO),

D is the forward matrix =0.
For a multiple-input multiple-output (MIMQ) system, with m inputs and |

outputs, these equations become:

X =Ax+Bu gnd y=Cx+Du ; Where:

A=nxn plant or system matrix ; B =nxm control or input matrix
C=Ilxn outputmatrix ; D=Ixm feed forward matrix

u = m- dimensional control vector

y = |- dimensional output vector

The block diagram of the state space representation can be shown in the
Fig.2.5.

W=
Y
L]
=z

u>—s—1J B

A —

Fig.2.5. Block diagram of the linear, continuous time control system

represented in state space.
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2.5. Transfer Function (T.F):

If the system differential equation is linear, the ratio of the output variable to
the input variable, where the variables are expressed as functions of the D

operator, is called the transfer function.

Consider the system output vC=y in the RLC circuit of Fig.2.1 substituting
i=CDv¢ into Eq( LDi+Ri+1/CD i=e), yields: (LCD?*+RCD+1)v,;(t)

The system transfer function is:

G(D) = y(t) _ve(t) 1 (2.16)
u(t) e(t) LCD?+RCD+1 '

The notation G(D) is used to denote a transfer function when it is expressed in

terms of the D operator. It may also be written simply as G.

The block diagram representation of this system (Fig.2.6) represents the
mathematical operation G(D)u(t)=y(t); that is, the transfer function times the
input is equal to the output of the block. The resulting equation is the

differential equation of the system.

u(t) | GD) uy

Fig.2.6. Block diagram representation.

Note: sometime used the symbol (s) instead of (D) and transfer function
becomes writing as (G(s)) and D=s and D2=s2 ...... , and the equation (2.16)

will write as:

1

G= 2.17
LCS?+RCS +1 ( )

36




University of Anbar
College of Engineering
Dept. of Electrical Engineering

Control Theory |
Prof. Dr. Yousif Al Mashhadany
2021 - 2022

The program by using Matlab to change between the two forms for
representation of control system ( State Space and Transfer Function ) can be
shown below;

% The change in form from SSto TF is:
Cy=1;Ly=10;Ry=100;

A=[0 /Cy -1/Ly-Ry/Ly];

B=[0 1/Ly];

C=[10];

D=[0];

[num,den]=ss2tf(A,B,C,D)

% The change in form from TF to SS is:
numc=[0 0 1];

denc=[Ly*Cy Ry*Cy 1];
[AA,BB,CC,DD]=tf2ss(numc,denc)

In the Matlab/Simulink can be done as in the Fig. 2.7.

A A-matrix
X
e <l e R e o
uin - Bmatriy oY SUM integrator  C-matrix y out

Fig.2.7. Simulink state space representation of control system

H.W. Implement the program and compare between two results?
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2.6. Correlation between transfer functions and state-space equations

The following full derivation of transfer function of SISO system from the
state-space equations. Let us consider the system whose transfer function is

given by:

(2.18)

This system may be represented in state space by the following equations:
X = Ax+Bu (2.19)
y =Cx+Du

Where

X is the state vector ,u is the input and y is the output. The Laplace transform

of the equation 2 is given by:

(2.20)

sx(s) — x(0) = Ax(s) + Bu(s)
Y (s) = Cx(s) + Du(s)

Since the transfer function is previously defined as Laplace
transformation of the output to the input with zero initial conditions, we

assume that x(0)=0,then we have
sx(s) — Ax(s) = Bu(s) or (SI-A)X(s)=BU(s)
Multiplying (SI-A)™ to both sides of the last equation we will obtain

X(s)=(SI-A)"BU(S) (2.21)
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Substitute (2.21) in (2.20) we get
Y(s)=[C(SI-A)"'B+DJU(s) (2.22)

So that the transfer function of the system represented by state space will be:
G(s) =Y (s)/U(s) =[C(SI - A) B+ D] (2.23)

The right hand side of equation (2.23) involves (SI - A)~.Hence G(s) can be

written as
G(s)=Q(s)/|(SI=A)|

Where Q(S) is a polynomial in s .Therefore, |(SI-A)|is equal to the

characteristic polynomial of G(s).in other words ,the Eigen values of A are

identical to the poles of G(s).

B Bi ﬂn.

u B J« Ty é"--—'* J. Xa @_y j x é ¥

i 1

P —

Fig.2.8. Block diagram of state equation and output equation

An

From Fig.2.8. can be written the following states equations:

X, =Y-pu
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X =Y _,Bou' _ﬁlu = X1 _:Blu

X3 =Y _,Bou“ _ﬂlu. =X2 _:Bzu

B = b1 -a,4
B, = bz —a,4 -3,/

Bs = bs —af, -, - a5

ﬂn = bn _aiﬂn—l _an—zﬂn—Z Zngo. _anIBO

With this choice of state variables, the existence and uniqueness of the
solution of the state equation is guaranteed. (Note that this is not the only
choice of a set of state variables). With the present choice of state variable, we

obtain
X1=X,+ AU

X2 =X, + U
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Xna=X,+4 U

x1 | o 1 0 0 0l x | [8 ]
X2 0 0 1 0 0 |l x, B,
X3 |=|0 0 0 1 0 | xX3 |+|f; U
X'n-1 0 0 0 0 1 X'n-1 ﬂnfl
X'n __an —a,; —a,, —Qq.3 _al__X'n 1 _ﬂn J
_Xl .
XZ
lylst 0 =70/ ““0 0] x; |+ Bou
X'n-1
_Xln -
Or
X =AX +BU
Y =CX + DU
Where
'x, | o 1 0 0 0] [5 ]
X, 0 0 1 0 0 B,
X = X3 A=|0 0 0 1 0 1B: ﬂB
X'n-1 0 0 0 0 1 ﬂn—l
_Xn ] __an —a,; —a,, —a.; _al_ _ﬁn i
C=[1 0 0 0 0]
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Note that the state space representation for the transfer function is

Y(s) bys"+bs" +b,s" % +b,
U(s) s"+as" +a,s"?+a,

Example (1): Obtain the state equations for the circuit of Fig.2.9. The output

is the voltage v;.The input or control variable is a current source i(t). The

assigned state variables

areil,ig,i;g,vl,andVg,?

Fig.2.9. Circuit of Example 4.

Solution:

Three loop equations and two node equations are written:

. di
v,=LDi or vy=L —*
1 Li 1 1 1dt
v, =L,Di, +V,
v, = L,Di,
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i,=C,Dv, +1;

I =i,+C,Dv, +1i,

L, =L, +Li, +K
0 0 -1/C, -1/C, 0

X = 0 0 -L,/C,L, —(L, +L;)/C,L, X 4 1/C, !
/L, 0 0 0 0
-1/L, 1/L, 0 0 0

yl=p o 0o 0 [
2.7. Transfer Function from State-Variable Representation:

Having established the conditions for the equivalence of the state-variable
representation with that of the transfer-function, we are interested to find one
representation from the other by finding their relationship. Let us consider first
the problem of determining the transfer function of a system given the state

variable representation
X (t) = Ax(t) + Bu(t)
y(t) = Cx(t)

since the transfer-function representation is expressed in the frequency
domain, we begin by taking the Laplace transform of both equations,
assuming as usual in transfer-function determination that the initial conditions

on x are all zero.
SX = AX (s)+BU(s) (2.24)
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Y (s) =CX (s) (2.25)
Grouping the two X(s) terms in Equation (2.24) we have
(sl — A)X(s) = BU(s)

where the identity matrix has been introduced to allow the indicated
multiplication compatible. Now, pre-multiplying both sides of the above

equation by (sl — A)™*, we get

X(s) = (sl - A)* BU(s)

We substitute this result in Equation (2.25) to obtain

Y(s) = C(sl — A)™* BU(s)

Comparing this relation between Y(s) and U(s) with the Equation
(Y(s) = G(s)U(s))

we find that the transfer function matrix G(s) as:
G(s)=C(sl—-A)* B

For the single input-single output case, this result reduces to
G(s)=c'sI-A)'b

The matrix (sl — A)™" is commonly referred to as the resolving matrix and is

designated by ¢(s),

¢(s) = (s1 - A)*

In terms of this notation the Equations become
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G(s)=C o(s) Band G(s) =c’ ¢(s) b (2.26)

Example (2): Consider the system represented by the equations

| O 1 0
X (1) _{—10 T }x(t){l}u(t)

y(t)=[1 Ofx(t)

The matrix (sl — A) in this example becomes

S1 0 0 1] [s -1
0 AT 1=10 =74 (10 s+7
Its inverse is found as

s+7 1
_adj(sl -A) -10 s

He)= (1 =A) = det(sl —A) s2+7s5+10

Hence, transfer function will be as

s+7 110
i S
G(s)=c'g(s)b=(sl —A) ' =

s247s+10  s?+7s+10

In the above example, we observe that the determinant of the matrix (sl — A) is
equal to the denominator polynomial of G(s). This is always true for single
input - single output systems. Although Equation (2.26) provide a direct
method for determining the transfer function of a system from a state-variable

representation of the system, it is generally not the most efficient method.
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2.8. State Variable Representation from Transfer Function:

In Section 2.6 we have shown how to get the transfer function model of a
linear continuous system when its state-variable form is available. We shall
now take up the issue of getting the state-variable model when the transfer
function model is available. Since the state-variable representation is not
unique, there are, theoretically, an infinite number of ways of writing the state
equations. We shall present here one method for deriving a set of continuous
state variable representation from the transfer function. Analogous procedure
may be followed for writing the continuous state equation from pulse transfer
function in S domain. The transfer function of single-input-single-output

system of the form:

a, ,s"mal 5"’ +.0.0 a5 ey
s"+b 8"t +b s"?+...+bs+b,

G(s) =

Can be written ,after introducing an auxiliary variable E(S) as

Y(s)  as"Ha,s"i+a.tas+a, | E(S)

G (S) = n n-1 n-2
U (s)£88" +h stk iy e < ... & +b;s+b, E(s)

We let now
Y(s)=(a,,8"" +a, 5" +....+a,s+a,)E(S)
U(s)=(s"+b 8" +b 8" +....+bs+Db,)E(s)

From Theorem of Laplace transform, we note the following relations between

the variables in the s domain and time domain with zero initial conditions

E(s) > e(t)
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SE(s) »>e(t)
S’E(s) > e (t)

Under this correspondence we define the state variables
X (t) =e(t)

X, (1) =% (t) =€ (t)

X3 (1) =%, () =e"(t)

Xn (t) =X (t) =e (t)

From above two Equations group we obtain the state equations
X1(t) =X, (t)

X2 (t) = X, (t)

X3(t) = X, (t)

X'n (t) = Xn (t) < _boxl (t) - b1X2 (t) y. b2x3 (t) - bn—lxn (t) +Uu

In matrix notation this becomes

X1 | [0 1 0 0 ollx, | [0]
X'2 0 0 1 0 0 | x, 0
Xz [=|0 0 0 1 O0|x; [+|/0
xoal |0 0 0 0 1 lxoyl |0
X'n |—b, —b, -b, -b, b, | Xn | 1

In compact form, it is written as :
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x’(t) = A x(t) + Bu(t) ; The output equation is obtained from as
which may be written compactly a s y(t) = Cx(t)

Hence the last two Equations are a set of state equations for the continuous
system described by transfer function. Another convenient and useful
representation of the continuous system is the signal flow graph or the
equivalent simulation diagram. These two forms can be derived, after dividing

both the numerator and denominator of first Equation by sn :

Y(s) _ @S 8,8 .t aS+a,

G(S) = n n-1 n-2
U(s) s"+b, 8" +b, ,8" " +... +b;s+b, E(s)

From this expression we can get two equations
Y(s)=(a ;8" +a 8" +...+as+a,)E(s)
U(s)=(s"+b 8" +b, ,s"?+.....+bs+0,)E(s)
The above equation can be rewritten as follows
E(s)=U(s)—b,_,sE(s)—b, ,S°E(S) +...... —b,s""E(S) —b,s "E(S)

Example (3): Let us consider a single input single output system of the last
Example which is reproduced below for quick reference:

A{ 0 1]b:m,c:[1 0).d=[o 0]

-10 -7

We are interested to find its solution with initial condition x'(tg) = x'(0) =[0
0] and unity step input u(t) = us(t). The resolving matrix ¢(S) given by

relation (o(s) = (sl — A)™) is written as :
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adj(sI—A): [—10 S

s)=(sl—A)*'=
#s)=( ) det(sl —A) s*+7s+10
S+7 1
s?+75s+10 s®>+7s+10
S) =
#(s) 10 .

| s?2+75+10 s +7s+10

1.5 2, L1 1,
#(s) = 3's+2 s+5 3's+2 s+5
@ 1 N 1 ) l( 5 1l 2 )
13 s+2 s+5 3's+5 s+25
1(5e‘2 —2e7) 1(1e‘2 —1e7°)
13 3
P(t) = 10 g
= {lear—lev Z(5e° —2e7?
3( ) 3( )

Substituting the value of x'(0)=[0 0] and unit step input in the equation we get

4t t _
%J‘ (5e72(t4) _9p=5(tD) )dz' %J‘ (1e’2(”) _1e~5t-9) )dT ;
g 0

t
X(t) = [ #(t-)bu(z)dz = °
0 EJ‘ (1e—Z(I—r) _1e—5(t—r) )dT _J- (Se—5(1—7) _ 2e—2(t—f) )dT
0

3 39 |
L i
_J. (16*2“*7) —1e3t7) )dT i_lefzt _I_iefst
_13% |10 6 15
Oy 10 Lo 1
el B(t-r) _ 9n-2(t-7) Tt _Zp™
. ! 3 ! (5e 26 ydr | | 2

Therefore y(t) is computed as y(t)=cx(t)+du(t)

1 1 5, 1
f)=——-=e“"+—e7,t>0
y® 10 6 15
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2.9. Properties of the State Transition Matrix:

Some useful properties of the state transition matrix ¢(t) are recorded below :

|

. ¢(0)=e" =1 (identity matrix)

N

Cpt)=eM =eCM =g(-t) or g(-t) =g\ (t) = g(-t)
3. ¢(t1 +tz) = eA(tﬁtZ) = eAtl -eAtz 3 ¢(t1)¢(t2) i ¢(t2)¢(t1)
4. (4@))" =g(nt)

S. ¢(t1 _t2)¢(t2 _ts) = ¢(t1 —tg)fOF any t1, t2y t3

=

pt) _
o Ag(t)

2.10. Complex impedances.

Consider the circuit shown in Fig.2.10, then the T.F of this circuit is

— 7 * R
[ AT

: _ HCE ‘
€; ‘“0 7 € 4::- €; i) Za C:eo

Fig.2.10. circuit diagram of complex impedance

Eo(s)  Z,(s)
Ei(s)  Z.,(s)+Z,(s)

Where
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Z,(s)=Ls+R

1
Z,(S)=—
2(5) Cs

Z(s)=E(s)/1

Hence the T.F. Eo(S)/Ei(s) can be found as follows;

1
E6)_ ¢ 1
2
E. (s) Ls+R+C1 LCs® +RCs +1
S

Example (4): Consider the electrical cct shown in Fig.2.11. Obtain the T.F
Eo(s)/Ei(s) by use of the block diagram approach?

R1 Ra
O—WA— AW p——0

C O

Fig. 2.11. Circuit diagram of Example 5.

L

Solution:

Equations of the circuit in Fig.2.11 are:

¢, . .
e = C_lj(ll —i,)dt+iR;

1¢,. . 1 .. :
0= C_l.[(lz —|1)dt+C—2.[|2dt+|2R2

eozcijizdt
2
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By taking the L.T. for the above equation:
E(s), :Cils(ll(s,)—lz(s)+|1(s)R1 (2.27)
0= (1,(8) = 1,(8) + = 1, ()1, (SR, (2.28)

C;s C,s

Ea(9) = 5512
By using Eq(2.27), we get:
C,S[E(S), — I, (S)R,]=1,(s5)—1,(s) (2.29)

From Eq’s(2.28)&(2.29) we get:

€5 L (9)-1,00]

1,(s)=
2 (%) R,C,s+1 Cs

The transfer function of Eo(s)/Ei(s) can written in term of 12(s) as follow:

Eo(8) _ 1 (2.30)
E(s) (RC,5+1)(R,C,s+1)+R,.C,s '

The term R,C,s in the denominator of the transfer function represents the
interaction of two simple RC circuits .since (R,C,+R,C,+R,C)*> (4R,
C:R,C,) the two roots of the denominator of equation (2.30) are real. The

present analysis show that if two RC circuits are connected cascade so that the
output from the first circuit is the input to the second, the overall transfer

function is not the product of 1/(R,C,s+1) and 1/(R, C, s+1).
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The reason for this is that when we derive the transfer function for an isolated
circuit, we implicitly assume to be infinite which means that no power is being
withdrawn at the output. when the second circuit is connected to the output of
the first , however, a certain amount of power is with —drawn and thus
assumption of no loading then violated therefore if the transfer function of
this system is obtained under the assumption of no loading then it is not valid .
The degree of the loading effect determines the amount of modification of the

transfer function.
2.11. Transfer functions of non-loading cascaded elements

The transfer function of a system consisting of two no loading cascaded
elements can be obtained by eliminating the intermediate input and output. For

example consider the system shown in Fig.2.12.a. The transfer functions of the

XZ(S) and GZ(S) i X3(S)
Xy (8) X,(8)

elements are: G,(s) =

If the input impedance of the second elements is infinite, the input of the first
element is not affected by connecting it to second element. Then transfer
X,(8) 4 X, (s) X4(s)

X,(8)  Xy(8) X,(5)

28, Gy X oy RO, X6 TG g6y

(@) (b)
Fig. 2.12. (a) System consisting of two non-loading cascaded elements; (b) an

function of whole system becomes: G(s) =

equivalent system.

The transfer function of whole system is thus the product of transfer functions
of the individual elements. This is shown in Fig.2.12.b.as an example,
consider the system shown in Fig.2.13,the insertion of an isolating amplifier
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between the circuits to obtain non-loading characteristics is frequently used in
combining circuits. Since the amplifier has very high input impedance, an
isolation amplifier inserted between two circuits justifies the non-loading
assumption. The two simple RC circuit, isolated by an amplifier as shown in
Fig.2.13. Have negligible effects and the transfer function of the entire circuit

Is equal to product of the individual transfer functions, thus in this case

Es(s) , 1 1
E. (s) _(Rlcls +1)K(R2C23 +1)

E,(s) _( K
E.(s) (RGC,S+1)(R,C,5+1)

R, Ra
AR

o HAW——O
Isolating

£ L amplifier OG0= &
{gain K)

o O

Fig.2.13. Electrical System.
Example (5): Armature-Controlled dc motors

The dc motors have separately excited fields. They are either armature
controlled with fixed field or field-controlled with fixed armature current. For
example, dc motors used in instruments employ a fixed permanent-magnet
field, and the controlled signal is applied to the armature terminals. Consider

the armature-controlled dc motor shown in the following Fig.2.14.

R, = armature-winding resistance, ohms

L, = armature-winding inductance, henrys
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I, = armature-winding current, amperes

Is = field current, a-pares ; ea = applied armature voltage, volt

ep = back emf, volts; 0 = angular displacement of the motor shaft, radians
T = torque delivered by the motor, Newton*meter

J = equivalent moment of inertia of the motor and load referred to the motor
shaft kg.m2

f = equivalent viscous-friction coefficient of the motor and load referred to the
motor shaft. Newton*m/rad/s

R, L,
L iﬂ W
.
1T T @ T
&

if — constant

Fig.2.14. Circuit Diagram of armature-controlled dc motor
T =K,i,v ; Where
y is the air gap flux, v =K,i, ks is constant
T =K,i K,i
For a constant field current

55




University of Anbar
College of Engineering
Dept. of Electrical Engineering

Control Theory |
Prof. Dr. Yousif Al Mashhadany
2021 - 2022

T =Ki,,k is a motor torque constant
e, =K,y
For constant flux

e, =k, a4 .k, 1s back emf constant
dt

The armature circuit equation is
di, .
LE‘EJF R,i, +8&, =€, (2.31)

The armature current produces torque which is applied to the both inertia and
friction to rotate the motor, hence
d’9 dg

91391, (2.32)

J

Taking the Laplace transform of the above three equation with assuming all

initial condition is zero

E, () = K,sO(s)
Lsl,(s)+R,1,(s)+E,(s)=E,(s)
(Ls+R)1.(s)+E, (s) = E,(S)
Js’0+ fs@=T =KI (s)

(Js* + fs)@ =T =Kl (s)
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The transfer function can be obtained as

o(s) K
E.(s) s(L,Js*+(L,f+R,J)s+R,f+KK,

Try to check this equation

Example (6): Field-Controlled dc motor

Find the T.F ( O(s)/Ef(s))For the field-controlled dc motor shown in Fig.2.15
below

Ry i Ra i,
_/\t\/\/\_»T AN <
J L g N IT ‘
f £ 1 JRN, “a
Nraran't i)
| T o r |

Fig.2.15. Circuit Diagram of field-controlled dc motor

The torque T developed by the motor is proportional to the product of the air

gap flux y and armature current i, SO that

T =K,i,w, ki is constant

T=K,i,, ky isconstant
di, _

Lf E‘F Rflf :ef (233)
2

LN S (2.34)
dt dt

Taking the Laplace transform of the above three equation with assuming all
initial condition is zero
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(LfS+Rf)|f(S):Ef (S)
(Js® + )0 =T =K, (s)

The transfer function can be obtained as

o(s) _ K,
E.(s) s(L,s+R,)(Js+f)

Try to check this equation

H.W. Find the transfer function &and £

¢ (s) I ()

2.12. Mechanical Systems:

Mechanical systems obey Newton’s law that the sum of the forces equals zero;
that is, the sum of the applied forces must be equal to the sum of the reactive
forces. The three qualities characterizing elements in a mechanical
translation* system are mass, elastic, and damping. The following analysis
includes only linear functions. Static friction, Coulomb friction, and other
nonlinear friction terms are not included. Basic elements entailing these
qualities are represented as network elements, and a mechanical network is
drawn for each mechanical system to facilitate writing the differential
equations. The mass M is the inertial element. A force applied to a mass
produces an acceleration of the mass. The reaction force fM is equal to the
product of mass and acceleration and is opposite in direction to the applied
force. In terms of displacement X, velocity v, and acceleration a, the force

equation is
f =M, =MD, = MD?x (2.35)
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be de fe
(a) (b) (©)

Fig. 2.16. Network elements of mechanical translate.

The network representation of mass is shown in Fig. 2.16.a.0ne terminal, a,
has the motion of the mass; and the other terminal, b, is considered to have the
motion of the reference. The reaction force fM is a function of time and acts
“‘through *’M. The elastance, or stiffness, K provides a restoring force as
represented by a spring. Thus, if stretched, the string tries to contract; if
compressed, it tries to expand to its normal length. The reaction force fk on
each end of the spring is the same and is equal to the product of the stiffness K
and the amount of deformation of the spring. The network representation of a
spring is shown in Fig.16b. The displacement of each end of the spring is
measured from the original or equilibrium position. End ¢ has a position Xxc,
and end d has a position xd, measured from the respective equilibrium

positions. The force equation, in accordance with Hooke’s law, is

fo =K(X, —Xy)

If the end d is stationary, then xd =0 and the preceding equation reduces to
f =Kx

c
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The plot fk vs. xc for a real spring is not usually a straight line, because the
spring characteristic is nonlinear. However, over a limited region of operation,

the linear approximation, i.e., a constant value for K, gives satisfactory results.

2.12.1. Translational mechanical system:

Example (7): find the transfer function of the following system
Y F=ma

F =Ky+mD?y +BDy K is spring constant,
Spring

B viscous friction coefficient F

: M |mass
F =mD“y + BDy +ky y

Y(s) 1 B E ‘ {""""'Dashpot
F(s) ms?+Bs+k
77777
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Example (8): Find the transfer function of the following system

F

|

Mass

k ¢ k¢ Bl B:AE lw

VLl

F =mD?y+ (B, +B,)Dy + (k, +k,)y

Y(s) 1
F(s) ms?+(B,+B,)s+(k, +k,)

Example (9): Find the transfer function of the following system

) %
k:% kz? BIEE Bfé

Il P77 77777y 77777

F=k(y;—Y,)

kl(yl - Y2) = (kz + k3)Y2 + (Bl + Bz)DY2
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F :kl(yl_Y2):k2(Y2_Y3):BlD(ys_Y4):BzDYA l

_ !

Y.
}.‘

:

-3

1
5. B

4

77777

2.12.2. Rotational mechanical systems:
Ja=>T

Where

J is the moment of inertia

« 1S the rotational acceleration

T is the toque

Example(11): Write the mathematical model of the following system

T =JD°6+BD#
T=JDw+Bw
Where

w=0 =D6

a=w =0 =D?@

Example (12): Write the mathematical model of the following system
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T =JD%), +K(6,-6,)

K(6,-6,) = BD@, —

Rigia shaft

Plcxﬂ;le shafi

Example (13): Write the mathematical model of the following system

T =K,(6,-6,)
T =K,(6,-6,)=J3,D*0+B,D(9, - 6,) + B,D6,

B,D(0, - 6,) = J,D?0, + B,D6, + K0,

2.13. Liquid level systems

Examplel.Write the mathematical model of the following system

Control
. Valve
G-, =00 %
i 0 dt
Where
For laminar flow |
h H+h
TR l P
Q+q,
For turbulent flow Load
Valve
qo = KR ’ Resistance
R

63




University of Anbar
College of Engineering
Dept. of Electrical Engineering

Control Theory |
Prof. Dr. Yousif Al Mashhadany
2021 - 2022

q N _cdh
i R dt
The differential equation will be

Rc@+h =Rq
dt i

Taking the Laplace transform
(Res+1)H(s) =RQ (s)

So that the final transfer function will be
H (s) R

Q,(5)  (Res+1)

According to that we can find

Q) 1
Qi (s) - (Res+1)

Example (14): Find the TF of the interaction liquid level system

—h _
ql:hl 2 Q+q  _

h Q+q, Ii_
q2 :_2 Iy .'I"; H,+h, Ba

H
h,—h
2 q,= 1R-1 2 R R
dhy qu—{ e,
S 9T ‘
c :ﬂ:q I Q,(s) _ 1
2 dt 1 72 Q) R R.c.s2+5(Rc,+R,C, +R c)+1

171272 11 272 2

Q,(5) Hy(s) Hy(9)
Qs) " Q) Q)
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2

N
e lj
Rl
:

ahy
C :E:q_ql

dh

—__2_4=
Co=t ~Hh~ 9

Q, ()
Q)

Home work : Find TFs.

2.14. Thermal Systems:

Heater

Hot liquid

Mixer 5 8,

/]
27/ x

5, —==£
Cold liquid

/
\\\\\\\3

Consider that heat input rate changes from H to H +h. then heat outflow will
change from H to H +h, also the temperature of the out following liquid will
change from 6, to 6, +6, . Considering change only:

[0]

do
h—h =0=—2
e th
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6=hR

Or
deo
RO— +6 =Rh,
th+ '

Note

h, =Gcé

By taking Laplace transform

0s) R
Hi(s)_RQs+1

9(3) 1 H.(s) R | 0
_ & ) —— |6
6.(s) RQs+1 RQs 1 ,

In case of changes in both 0. &h, then we have :

Rcd—9+0=0. +Rh.
dt i i

Where
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0, . Steady state temperature of inflowing liquid, F°.
0, : Steady state temperature of outflowing liquid, F°.

G : steady state liquid flow rate Ib/sec.
M: mass of liquid in tank,lb.

c: specific heat of liquid tu/lb.F°.

R: thermal resistance, Fo sec/B tu.

Q: thermal capacitance, B tu/F°.

H : Steady state heat i/p rate ,B tu/sec.

2.15. Extra systems
2.15.1. Gear trains

A gear train is a mechanical device that transmit energy from one part of a
system to another in such a way that force, torque ,speed and displacement are
altered. Two gears are shown coupled together in following figure. The

inertial and friction of the gears are neglected in the ideal case considered.

The relationships between the torque T; T, and angular displacements o1, o
and the teeth numbers Ny N, of the gear train are derived from the following

facts.
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1. The number of teeth on the surface of the gear is proportional to the

radius ry, r, of the gears ,that is.

riN,=r; N;

2. The distance traveled along the surface of each gear is same. Therefore

L ©1=126;

3. The work done by one gear is equal to that of the other since there is

assume to be no loss, thus

Tl 01— T2 (1)

If the angular velocities of the two gears are w; and ®;

72 _ ~2 _ 1
, 0 N, o 1,

T 6 N o r
=
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2.15.2. Potentiometer (transducer):

Consider linear resistance

x=kr : X=kR

|_\£ ; VOZIR " sgeeen
R

From 1 and 2

2.15.3. Error Detector

V, =k4, | /,__J
V, =k,6, \\._ V, 1
E =k,0,-k,6, \ 6 | ‘\/gc_ A
If k= ko=k | B
E=k (6,-6,) -~

| . I

2.15.4. First-Order Op-Amp:

In addition to adding and subtracting signals, op-amps can be used to
implement transfer functions of continuous-data systems. While many
alternatives are available, we will explore only those that use the inverting op-

amp configuration shown in beside Fig.
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Fig.2.17. Inverting op-amp configuration

In the figure, Z1(s) and Z2(s) are impedances commonly composed of
resistors and capacitors. Inductors are not commonly used because they tend
to be bulkier and more expensive. Using ideal op-amp properties, the input-
output relationship, or transfer function, of the circuit shown in Fig. can be

written in a number of ways, such as

EREN el ¥ 0l _ZJS)Y,(s) = - Y1 (s)
Ei(s)  Z,(s)  Z,(s)Y,(s) Y (s)

G(s)=

Where Y1(s) = 1/Z1(s) and Y2(s)=1/Z(s) are the admittances associated with

the circuit impedances.
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Example (16): For the Fig. below find The transfer function that Described
the relation between Eo(s) and E(s) (i.e. Find G(s)= Eo(s)/ E(s)?

Solution:

AN
R ~_
N = Hxhx
Kp = N

— 5 R

E, () __ R, (s)

E(s) R, (s)
E(s) 1
E(s) RS
Eo(S) _ R ¢ s
E(s) DD

The output voltage is
E,(s)=—{E,(8)+E(s)+E,(9)]

Thus the transfer function of PID operation amplifier is
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G(s) =E°—(S)=&+L+ RpCpS
E(s) R, Rgs

RR,C,R,C,S° +RRCS+R,

G(s) =
(5) R,RC;s

This is transfer function of ( proportional , integral , derivative )(PID)
controller that will study in details in next time.
H.W. Find the transfer functions Eo(s)/E(s) for each the circuits shown in (a,

b) of the below Fig.

2.16. Simulation diagram:
The simulation diagram is a term can be defined as the connection diagram by
using analogue tools to describe the differential equation of the mathematical

model for any system. The elements are used in simulation diagram can be

shown by Integrator —p I —> X ZJ‘de‘t

Amplifier K x2 :k xl

or gain

Summer Xy :XI—X2+X3

X3

Fig.2.18. Elements used in a simulation diagram.
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One of the methods used to obtain a simulation diagram includes the

following steps:
1) Start with differential equation.

2) On the left side of the equation put the highest-order derivative of the
dependent variable. A first-order or higher-order derivative of the input may
appear in the equation. In this case the highest-order derivative of the input is
also placed on the left side of the equation. All other terms are put on the right

side.

3) Start the diagram by assuming that the signal, represented by the terms on
the left side of the equation, is available. Then integrate it as many times as
needed to obtain all the lower-order derivatives. It may be necessary to add a

summer in the simulation diagram to obtain the dependent variable explicitly.

4) Complete the diagram by feeding back the approximate outputs of the
integrators to a summer to generate the original signal of step 2. Include the

input function if it is required.

Example (17): Draw the simulation diagram for the series RLC circuit of Fig.
below in which the output is the voltage across the capacitor.

Solution:

For the series RLC shown above ,the applied voltage equal to the sum of the

voltage drops when the switch is closed. - o+ L -

Vi+V, +Vp =¢e + r/f'-; , [+
i1 QO 37
| —+=|idt+iR=¢ - ¢ N
dt ¢ - ol +

Stepl. When y=V,and u=e we get
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LCY " +RCY +Y =u
Step 2. Rearrange the terms to the form
1 R 1

Y =—u——Y ——Y

LC L LC
Y =bu-aY -bY
Where

a= R/L and b=1/LC

step3.the signal Y- is integrated twice as shown in simulink implementation
(Fig.a)

step4. The complete block diagram can be illustrated as in Fig.b.

the state variables are often selected as the output of the integrators in the
simulation diagram.

In this case they are :

y=X,
Yy =X, =X1
Y= X2

The state space representation of the system is

, 0 1 0
X1 X,
[ }: 1 R { } 1 u=AX +Bu

) "l L lic
.
y=[1 0] +0u=cX +Du
X2
(ij—i'wsy—iwsy—@
In1 -~ ) Cut

Integrator  Integrator2

Fig.2.19. Simulink implementation
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Integrator Integrator2
P 15 f— > s 1D
y=x2 = oun

s
e
Fig.2.20. Simulink implementation of system state space

Example (18): Draw the simulation diagram that explain the differential

equation below:

Yy +2y" —5y — 7y =5sin(u)
Solution

y=X =Y =X1=X,

X, =y = X2=Y =X,

Yy =X, =>X3=Yy =5sin(u) -2y +5y +7y

From the above eqn’s can be draw the following Simulink diagram can be

obtained:

Integrator Integrator2 Integrator3

/s > 1s > 1/s L&D
Qut1

Fig.2.21. Simulink block diagram of the given example
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H.W.(1):

For the positional servomechanism obtain the closed-loop T.F. for the
positional servomechanism shown Fig.2.22. Assume that the in-put and output

of the system are:

Y . T ¥ g

"
s

1LVIF

e _E*iir*f
L
i}
rt
—
Al
“uﬁ.ﬂ!éﬂua

r-.n"'l.-_

Fig.2.22. Circuit Diagram of the positional servomechanism.
input shaft position and the output shaft
r = reference input shaft, radian
C = output shaft, radian
0 = motor shaft, radian
k, = gain of potentiometer error detector = 24/xt volt/rad
k, = amplifier gain = 10
k, = back emf const.= 5.5*10-2 volts-sec/rad
K = motor torque constant = 6*10-5 Ib-ft-sec2

R,=0.2Q
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L, = negligible

Jm = 1*10-3 Ib-ft-sec2

i = negligble

J; = 4.4*10-3 Ib-ft-sec2

fL = 4*10-2 Ib-ft/rad/sec

n = gear ratio N1/N2=1/10
Hint J=J,+tnyJ,, f=f, +n,f_

6(s) 072

Answer =
E.(s) s(0.13s+1)

H.W.(2): Find the circuits diagram for every transfer function below:

a.

—
Y
-~
g]
)
S
Y
—

o

RcD
LcD? +ReD+1

>

.l'_,
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Lecture No. Three

Block Diagrams Processing

This lecture discusses the following topics :

3.1. Introduction.

3.2. Symbols used in block diagrams (B.D).
3.3. Block Diagram reduction rules.

3.4. Variables in the Block diagram.

3.5. The Block Diagram Components.

3.6. Solved Problems

Yousif AL Mashhaaany
U- O- Anbar
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3.1. Introduction
The representation of physical components by blocks is shown in Lecture two
for each block the transfer function provides the dynamical mathematical
relationship between the input and output quantities. Also, lecture one
describe the concept of feedback, which is used to achieve a better response of
a control system to a command input. Now, the control systems represents by
block diagrams. The blocks represent the functions performed rather than the
components of the system.
3.2.  Symbols used in block diagrams(B.D):
a. Block: the transfer function(TF) of the system element is placed in the
block symbolized by,
i/p TE o/p

Fig.3.1. Block diagram of a TF
b. Summing points: The operation of addition or subtraction is performed
by this system element and symbolized by.

R4/ ) RiC,

+

Fig.3.2.Summing point notation
c. Take off point: This operation is used to provide a dual input (i/p) or
output(o/p) to a system element and it is represented by,

C Takeoff point C

>

C
Fig.3.3.Take off notation

d. Direction arrows: this symbol defines a unidirectional flow of the
signal

»

Fig.3.4.Arrow notation
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e. Cascaded rule: If two (or more) no load blocks in the same direction
the output as follow:

xl(s) > Gl(S) XZ(S) > GZ(S) XS(S) N X]!S! Gl(S) GQ(S) XS(S) >
_ X5(s) and G.. = X3(s) —C(5) = X3(s) _ X5(s)X3(s)
17 X.(5) 27 X,(9)’ X1(s)  X1(8)X3(s)

= G1(s)G2(s)
Fig.3.5. Cascaded rule
3.3. Variables in the Block diagram:

For the block diagram shown in Fig. below can be define the following term,
that is represents the standard control system term in the representation of
physical system in block diagram form:

Command (v): is the input that is established by some means external to, and
independent of, the feedback control system.

Reference input (r): is derived from the command and is the actual signal
input to the system.

Controlled variable (c): is the quantity that is directly measured and
controlled. It is the output of the controlled system.

Primary feedback (b): is a signal that is a function of the controlled variable
and that is compared with the reference input to obtain the actuating signal.
Actuating signal (e): is obtained from a comparison measuring device and is
the reference input minus the primary feedback. This signal, usually at a low
energy level, is the input to the control elements that produce the manipulated
variable.

Manipulated variable(m): is the quantity obtained from the control elements
that is applied to the controlled system. The manipulated variable is generally
at a higher energy level than the actuating signal and may also be modified in

form.
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Desired or

- ——— Ideal value

| Idealized ()
r ——————————— +| E'IE’IHFH_FS. r NN DN DN DN DN DN BN BB BN BEE Bam B

| Gi Disturbance
I Actuating - = = = Hed
| Reference Signal (e) Manipulated fd) comrotie sysiem
I Inpur (r) i variable (m ) """”’7__‘.15"'*’ el error {va )
| Reference Control Controlled | : Indirectly

b

inpuf ' . elements systen Controlled
Command elementis . G system £
) G :
Primar Indirecily
: e mmmm s mmmman Conirolled
f *’f""g“d" Feedback £ Variable g
elements &

H

Fig.3.6. closed loop control system with all signals

Indirectly controlled variable (q): is the output quantity that is related through
the indirectly controlled system to the controlled variable. It is outside the
closed loop and is not directly measured for control.

Ultimately controlled variable: is a general term that refers to the indirectly
controlled variable. In the absence of the indirectly controlled variable, it
refers to the controlled variable.

Ideal value i: is the value of the ultimately controlled variable that would
result from an idealized system operating with the same command as the
actual system.

System error (ye): is the ideal value minus the value of the ultimately
controlled variable.

Disturbance (d): is the unwanted signal that tends to affect the controlled

variable. The disturbance may be introduced into the system at many places.
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3.4. Block Diagram reduction rules:
The rules are using in the block diagram reduction to reduce the complex
block diagram as single block diagram between input and output.

Table 3.1. Rules of Block Diagram Reduction

Transformation B.D Equivalent B.D Equation(T.F)

Moving summing

+
point Rl—'?—' G 0 Ri—{ 6 —(—c c
beyond ¢ i| Ri R,

R, Ro—» G
a block

Moving summing

Ri—] G |— c| RiZ G l»cC
point a head of a i) r C =R,G+tR,

block R, 1/G [«—R2
Moving
forward + r ) = R(G1 £ G7)
» G,
path
Moving +
R G]_ =C -R> 1/G, G, N G C C Gl
F/B to the forward ) +¥ r R-1+CcC.
142
path - G2
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3.5. The Block Diagram Components:

Reference input elements Gv: produce a signal ( r ) proportional to the

command.

Control elements Gc: produce the manipulated variable m from the actuating
signal.

Controlled system G: is the device that is to be controlled. This is frequently a
high-power element.

Feedback element (H): produces the primary feedback b from the controlled
variable. This is generally a proportionality device but may also modify the
characteristics of the controlled variable.

Indirectly controlled system Z: relates the indirectly controlled variable ( q)
to the controlled quantity ( ¢ ). This component is outside the feedback loop.
Idealized system Gi: is one whose performance is agreed upon to define the
relationship between the ideal value and the command. This is often called the
model or desired system.

Disturbance element N: denotes the functional relationship between the

variable representing the disturbance and its effect on the control system.
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3.6. Solved Problems

Prob.1. For the block diagram shown below find the overall transfer function

ip/op?

ip(s) 5 fm)

Solution:
By Appling the rules of B.D. reduction can be get:
by cascaded no load blocks can be reduce the forward direction:

5
G (s)=——
1(5) S+2
S+ 2
G S)=————
2(8) s? +55+2

The feed forward TF is:

Y ¥ 5s+10
SR GZ(S)_33—352—83+4
By using negative feedback rule we get
G(s)=— GO gy
1+G,(s)*G,(s)H(s)
or
G(s) = G () G, (5)=G,(s)G
(S)—m: 1 (8) =G,(s)G,(s)
The final TF will be:
25s* +50s
G(s) =

s* -3s®—-85°+9s+10
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Prob.2. ( Position Control System ):

Fig.3.7. below shows a simplified block diagram of an angular position
control system. The reference selector and the sensor, which produce the
reference input R=er and the controlled output position c=e,, respectively,
consist of rotational potentiometers. The combination of these units represents
a rotational comparison unit that generates the actuating signal E for the
position control system, as shown in Fig.3.8 ,where ke, in volts per radian, is
the potentiometer sensitivity constant. The symbolic comparator for this
systemis shown in Fig.3.9. The transfer function of the motor-generator
control is obtained by writing the equations for the schematic diagram shown
in Fig.3.8. This figure shows a dc motor that has a constant field excitation
and drives an inertia and friction load. The armature voltage for the motor is
furnished by the generator, which is driven at constant speed by a prime
mover. The generator voltage e, is determined by the voltage ef applied to the

generator field. The generator is acting as a power amplifier for the signal

voltage e .
ip(s).| Rotational | (r) () = (M| Mot-Gen | (C)
™ potentiometer W’ Amplifier = T OB(S)
A
(b)
Rotational

potentiometer [¢

Fig.3.7. Position control system
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Reference input

Error measuring device

Fig.3.8. Rotational position comparison

§=6, -6,

Generator

Fig.3.10. Motor-generator control

The equations that described the system in Fig.3.10. can be written as:

e, =L,Di, +R, i, (3.1)
e, =K. i (3.2)
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e, —€,=(L, +L,)Di, +(R, +R,)i, (3.3)
e, =K, Db, (3.4)
T =K, i =JD%,+BD6, (3.5)

According to the eq’s(3.1-3.5) can be draw the block diagram of the system in
Fig.3.10. same as the Fig.3.11;

E?f Gl If. I G

Fig.3.11. Block Diagram of the Motor-generator control system

The transfer functions of each block, as determined in terms of the pertinent

Laplace transforms, are as follows:

6.(5) = () UR, R, (36)
E,(s) 1+(L,/R,)S 1+T,S
E,(s)
= = '7
GZ (S) If(S) Kg (3 )
G, (s) = I, (s) _ (R, +R,) g /Ry (3.8)
E,(S)—En(s) L+[(L, +L,)/(R, +R)IS 1+(L, /R, )S
T(s)
G,(s) = =K
==K, 39)
Gy(s) = 0,(s) _ 1/B 1B (3.10)

T(s) s[+(I/B)s] s(+T,s)

(9= =K,

(3.11)
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The block diagram can be simplified, as shown in Fig.3.12, by combining the
blocks in cascade. The block diagram is further simplified, to get the final

transfer finction of vthe system as follow:

E (5) E_(s) E.—-E ;
f £ R | & £z Kp/ Ry B ——)
; g g a
> 1+T.8 ¢ > S(A+T gps)(1+Tys) o)
E???(S:I
K, (s) <€

Fig.3.12. simplified block diagram

The next step is to apply the negative rule to get:

Ef(S) E /R, ES(S) Kb(s) R B
— Pl 5[(1+Tgmsj(1+Tn5)+K 7K, RomB P 0o(s)
6u(s 9,0 KK /RR B
X 2
Ef (s) SE+T,s)[(1+ KT Kb / BRgm) + (Tgm +Tn)s +Tngns ]
©_(8) K
G (S) . ~ X
X E_() SA+Ts)A+T,59)
Where
K_K L JR
K T 9 = andT = gm
xR (BR +K Kb) R; m BRgm+KT Kb
K,
“=R, K,

The final block diagram of the this example will be as follows:
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E (s
7 K,
—p 1T f5)(1+T ) - 7 (5)

H.W. Find the Simulation Diagram for the transfer function G,(s) ?

Prob.3. Simplified the block diagram for the system shown below .

— H1

ro

ICEN

Solution:
We can notice the following

1.G2 and H2 is standard negative feedback system and the transfer function

will be as:
Gtl—_ %2
1+G2H?2

)
2
1> G2
1+G2H2

G3if

*ﬁ

2. The transfer function of the parallel combiation of H1/G2 and unity forward
path will be as :

Gt2 =1+ﬂ
G2
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1+G2H2

v

H3

3.Gtl ,Gt2 ,G3 and H3 combination is a standard negative feedback control

system and its transfer function will be:

_ GHIGt2G3
1+GtIGt2G3H3

Gl

-

Gitl =

GilGr2G3

1+ GilGi2G3H3

4.Gt3,G1 and unity feedback control system is a standard negative feedback

its transfer function will as in the follwing block diagram

]

(G2+ H1)GIG3

1+G2H2+G2G3H3+ GIHIH2 + GIG2G3 +GIG3H]1

The final transfer function of the system is:
G1G3(G2+ H1)

C

R 1+G2H2+G2G3H3+G3H1H 2+ G1G2G3+ GIG3H1

Example 5. Simplified the following block diagram shown in Fig.3.13.a

Gl

H1

i ——

v

G3

(@)

By using the standard rules for reduction can be get the overall all T.F by the

steps (b-e), That is shown below:
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k
R Y
Gl G2 P G3 >
H2/G3
(b)
R 2 Y
Gl > G2G3 >
1+G2G3H1
H2/G3 |
(c)
R > GIG2G3 Y -
1-GIG2H2+G2G3H1 -
(d)
R Y
7
) G1G2G3 >
1-GIG2ZH2+G2G3H1+GIG2G3
(e)

Fig.3.13( b-e ): Steps for the solution of reduction the B.D. in Fig.3.13.a.

The final transfer function is
Y(s) G1G2G3
R(s) 1-G1G2H2+G2G3H1+G1G2G3

Prob.4. For Matlab :Find the overall transfer function(C(s)/R(s)) of the

following control system using Matlab.

Solution: R 5 C
s+5

MATLAB provides the “‘feedback’” function U

to calculate the overall (closed -loop) transfer function
91




Control Theory |
Prof. Dr. Yousif Al Mashhadany
2021 - 2022

University of Anbar
College of Engineering
Dept. of Electrical Engineering

as shown by the following m-file.

% The feedback command calculates the closed-loop transfer

% function for a given forward transfer function G(s)

% and feedback transfer function H(s)

% Type "help feedback" for more information

% Example 1:

% Define a forward transfer function

% using the tf command

% System = tf (numerator, denominator) Transfer function: 5/(s +5)
G =tf([5].,[1 3])

% Define a feedback transfer function H(s)=1/s

% using the tf command

H =tf([1],[1 O], % System = tf (numerator, denominator) Transfer function: 1/s
% For a non-unity, negative feedback system the

% closed loop transfer function is

cltf = feedback (G,H,-1)

%Transfer function:5s / (s"2 +5s+ 5)

% For positive feedback use "feedback (G,H,1)"

5s / (s"2 +5s -5)

% The forward transfer function is calculated by multiplying

% G(s) and H(s) ; G *H : Transfer function: 5 / ( s"2+ 5s); The program:
G =tf([S].[1 5])

H =tf([1],[1 0]

cltf = feedback (G,H,-1)
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Prob.5. Construct the Dblock diagram for the system shown

below(q,q1,92,h1,h2) are changes from steady state.

dhl
—gl=cl—
a-q at

_ hl-h2
R1

ql

dh2
1-g2=c2—=
oaL-g "
{h2

2-__<
q R2

In Laplace transform
Q(s) — Q1(s) = clsH1(s)

H1(s) — H 2(s)

Ql(s) = =

Q1(s) —Q2(s) = c2sH 2(s)

H 2(s)
R2

Q2(s) =

c2sH2(s)

Ql(s)

Rl Cls R Q2(s)
'}(S
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Cls : R2 |
Qs) 1 1 QL(s) 1 1
> - _ - 2
Cls o = 1 = @
QL(®) o
Q(s)
Loop 3:
Q2(s)  (1/R2)@/C2s) 1
QL(s) 1+(1/R2)(1/C2s) 1+C2R2s
Loop 2
Q(s)  (@/Rp@/Cis) 1
QL(s) 1+(1/R1)(@/Cls) 1+C1R1s
R2
1 1
1+RI1C1s o low
Q(s) 1+R2C2s 025

Loop 1.
Q2(s) (1/ RIC1s)(1/ R2C2s)
Ql(s) 1+ (1/RIC1s)(l/R2C2s)C1R2s
Q2(s) _ 1

Ql(s) CIC2RIR2s’ +(CIRL+C2R2+R2C1)s +1
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Lecture No. Four

Signal Flow Graphs

This lecture will discusses the following topics

4.1. Introduction.

4.2. Flow-Graph Definitions.

4.3. Rules of Signal flow graph:

4.4. Signal flow graph for control system.

4.5. State Transition Signal Flow Graph

4.6. Simplification for the system of dual inputs

4.7. Matlab program for signal flow graph

Yousif AL Mashhaaany
U O- Anbar
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4.1. Introduction:

The block diagram is a useful tool for simplifying the representation of a
system. The block diagram has only one feedback loop and may be categorized
as simple block diagrams. When it has two, three, etc, feedback loops; thus it is
not a simple system. When intercoupling exists between feedback loops, and
when a system has more than one input and one output, the control system and
block diagram are more complex. Having the block diagram simplifies the
analysis of complex system. Such an analysis can be even further simplified by
using a signal flow graph (SFG), which looks like a simplified block diagram.

An SFG is a diagram that represents a set of simultaneous equations .It
consists of a graph in which nodes are connected by directed branches. The
nodes represent each of the system variables. A branch connected between two
nodes acts as a one-way signal multiplier: the direction of signal flow is
indicated by an arrow placed on the branch, and the multiplication of general
matrix block diagram representing the state and output equations. factor
(transmittance or transfer function) is indicated by a letter placed near the
arrow. Thus, in Fig.4.1, the branch transmits the signal x, from left to right and
multiplies it by the quantity a in the process. The quantity a is the transmittance,
or transfer function. It may also be indicated by a=t;, , where the subscripts

show that the signal flow is fromnodelto node 2.

X1 d Xo=—dXxy

® > @

Fig.4.1. Signal flow graph for x2=ax1
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4.2. Flow Graph Definitions.

The analysis of flow graph is achieved by mathematic process of anode that it

performs two functions:

1. Addition of the signals on all incoming branches
2. Transmission of the total node signal (the sum of all incoming signals) to all
outgoing branches these functions are illustrated in the graph of Fig.4.2, which

represents the equations

w=au+bv, Xx=cw,y=dw (4.1)
Three types of nodes are of particular interest:

Source nodes (independent nodes).These represent independent variables and
have only outgoing branches. In Fig.4.2, nodes u and v are source nodes.

Sink nodes (dependent nodes). These represent dependent variables and have

only incoming branches. In Fig.4.2, nodes x and y are sink nodes.

u

Fig.4.2. Signal flow graph for equation(4.1)
Mixed nodes (general nodes). These have both incoming and outgoing
branches. In Fig.4.2, node w is a mixed node. A mixed node may be treated as a
sink node by adding an outgoing branch of unity transmittance, as shown in
Fig.4.3, for the equation
W =au+bv, &x =cw = cau + cbv (4.2)
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A path is any connected sequence of branches whose arrows are in the same
direction. A forward path between two nodes is one that follows the arrows of
successive branches and in which a node appears only once. In Fig.4.2, the path

uwx is a forward path between the nodes u and x.

mixed node

sink node

Fig.4.3. Mixed and sink nodes for a variable

Input Node (Source): An input node is a node that has only outgoing branches.
Output Node (Sink): An output node is a node that has only incoming branches.
However, this condition is not always readily met by an output node.

Path: A path is any collection of a continuous succession of branches traversed
in the same direction. The definition of a path is entirely general, since it does
not prevent any node from being traversed more than once.

Forward Path: A forward path is a path that starts at an input node and ends at
an output node and along which no node is traversed more than once.

Loop: A loop is a path that originates and terminates on the same node and
along which no other node is encountered more than once.

Forward-Path Gain: The forward-path gain is the path gain of a forward path.
Loop Gain: The loop gain is the path gain of a loop.

Nontouching Loops: Two parts of an SFG are nontouching if they do not share

a common node.
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4.3. Rules of Signal flow graph

When constructing an SFG, junction points, or nodes, are used to represent
variables. The nodes are connected by line segments called branches, according
to the cause-and-effect equations. The branches have associated branch gains
and directions. A signal can transmit through a branch only in the direction of

the arrow.

1. The value of a node with one incoming branch, as shown below is

X, =aX, (4.3)

Xl > & X2

2. The total transmittance of cascaded branches is equal to the product of all
branch transmittances. Cascaded branches can be combined into a single branch

by multiplying the transmittances ,as shown below.

a b ab
X2

3. parallel branches may be combined by the transmittances, as shown below.

a

a+b
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4. A mixed mode may be eliminated as shown below

X1 X1
a ac
E‘ -
] > @ X4 = X4
X3
b bc
X2 X2

5. A loop may be eliminated as shown below

ab/(1-bc)

X1
a  x7 b X3 x3 ab X3
c C

The derivation of last relationship can be explained as in the following

equations.

X3=bX2
X2=aX1l+cX3
X3=abX1l+bcX3= X3-bcX3=abX1l
ab
1-bc

(4.4)

X1

X 3(1—bc) = abX1= X 3=

6. Signal flow graph (SFG) applies only to linear systems.
7. The equations for which an SFG is drawn must be algebraic equations in the

form of cause and effect.
8. Nodes are used to represent variables. Normally, the nodes are arranged from

left to right, from the input to the output, following a succession of cause-and-

effect relations through the system.
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4.4. Signal flow graph for control system

Some signal flow graphs of simple control system are shown in Fig.4.4. For
such simple graphs, the closed loop transfer function C(s)/R(s) can be obtained
easily by inspection. For more complicated signal flow graphs, Mason’s gain

formula is quite useful.

G
R() G(5) o= Rs@mp——® C5)

_a_
1 G(s)
E(s)f _
R(s) G(s) »C(5)= R(s) O——pr E“U C(s)
H(s) b- - Hi(s)
N(s)
H(s)
o H(s)
N(s)
E(s)

| H(s) -d-

RI(s) G11(s)
R1(s) o Gl1(s) _.@—p(:l(s} > Cl(s)
G12(s
R2(s) o| G21(s)
o G12(s)
C2(s)
» GZZ(S) cz(s} RZ(s} Gzz(s)

Fig.4.4.(a-e). Signal flow graph forms for simple control system.
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In many practical cases e wish to determine the relationship between an input
variable and an output variable of the signal flow graph. The transmittance
between an input node and an output node is the overall gain, or overall
transmittance, between these two nodes. Mason’s gain formula, which is

applicable to the overall gain, is given by
1
A p

Where
P=path gain or transmittance of the Kth forward path

A= cofactor of the Kth forward path determinant for the graph with the loops

touching the Kth forward path removed.

A=determinant of the graph.
A=1-(sum of all different loop gains)+(sum of gain products of all possible
combinations of two nontouching loops)- (sum of gain products of all possible

combinations of three nontouching loops)+.......

Azl_ZLa +ZLbLC — ZLd LeLf 0 B
a b,c d.e,f

> L, =sum of all different loop gains

> LyL, =sum of gain products of all possible combinations of two nonteaching
b,c

loops

> LyL.L; =sum of gain products of all possible combinations of three
d.e,f

nonteaching loops.
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Example(1): Find the transfer function C(s)/R(s) for the system block diagram

shown below by using Mason' gain formula?

» C

Solution:
In the system there is only one forward path between the input R(s) and the

output C(s). The forward path gain is,
P =GG,G,
From the signal flow graph, we see that there are three individual loops.

The gains of these loops are;

L, =GG,H,
Lz = _GstH 2
L3 = _Glees\

Note that since all three loops have a common branch, there are no non-
touching loops; hence, the determinant is A given by

A=1-(L +L,+L,)=1-G,G,H,+G,G,H, +G,G,G,

The factor A, of the determinant along the forward path connecting the input
node and output node is obtained by removing the loops that touch this path.
Since path P, touch all loops, we have

A=l

Therefore the overall transfer function of the closed loop system is given by
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C) _Ra
R(s) A
C(s) G,G,G,4

R(S) 1-G,G,H, +G,G;H, +G,G,G,

HW. Try to obtain the transfer function by block diagram reduction and
compare the results.

Example (2): Consider the SFG of a system shown in the following figure.

Obtain the closed-loop transfer function C(S)/R(s) by use of Mason's gain
formula?

G7(s)

C(s)

-H2(s)
Solution:
In this system there are three forward paths between the input and the output.
P = GG,G56,Gs
P, =G,G4G,Gs

P3 = G666,

There are four individual loops in this system
L, =-G,H,

L, =-G,G;H,

L3 = —G6G4G5H )
L4 = _GzG3G4GsH 2
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Loop L, does not touch Loop L, and there are no nontouching loops in this
system just L; and L, so that the determinant of the system A will be

A=1-( Ly +Lo+ Lg+ Lo+ Ly Ly

The factor A; is obtain from A by removing the loops that touch p; ,therefore by
removing L;,L,, Ls, Ly and L, L, ,the factor A; =1.

Similarly by eliminating all loops in A that touch p,.

A, =1

Az can be obtained by removing ,L,, Ls, Ly and L, L, from the A that touch ps;
As=1- L, . The transfer function of the closed loop system C(s)/R(s)

C(s 1
% :K(plAl + PoA, + PsA;)

C(s) G,G,G,G,G; +G,G,G,G; + G,G,G, (1+G,H,)
R(s) 1+ G,H, +G,G,H, + G,G,G.H, + G,H,G,G,H, + G,G.G,G:H,

To illustrate how an equivalent SFG of a block diagram is constructed and how
the gain formula is applied to a block diagram, consider the block diagram

shown in Fig.4.5.(a). The equivalent SFG of the system is shown in Fig. 4.5.(b).

T
B

H]

(a)
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(b)

Fig. 4. 5. (a) Block diagram of a control system, (b) Equivalent signal flow

graph.

Notice that since a node on the SFG is interpreted as the summing point of
all incoming signals to the node, the negative feedbacks on the block diagram
are represented by assigning negative gains to the feedback paths on the SFG.
First we can identify the forward paths and loops in the system and their
corresponding gains. That is: forward path gain

P =GG,G;
p, =GG,
Loop gains

L, =-G,G,H,
L, = -G,G;H,
L, =-G,G,G,
L, =-G,H,

L. =-G,G,

The closed loop transfer function of the system is obtained by applying Mason’
gain formula to the SFG or using the block diagram reduction.

Y(s) GG,G; +GG,
R(s) A
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A=1+GG,H, +G,G;H, +GG,G; +G,H, + GG,

Y(s) G,G,G; +G,G,
R(s) 1+G,G,H,+G,G;H, +GG,G;+G,H, +G,G,

4.5. State Transition Signal Flow Graph:

The state transition SFG or, more simply, the state diagram, is a simulation
diagram for a system of equations and includes the initial conditions of the
states. Since the state diagram in the Laplace domain satisfies the rules of
Mason’s SFG, it can be used to obtain the transfer function of the system and
the transition equation. The basic elements used in a simulation diagram are a
gain, a summer, and an integrator. The signal-flow representation in the Laplace

domain for an integrator is obtained as follows:

X1(t) = X, (t); = sx, () = X, (1) (4.6)
Xl(t) — X2 (t) . Xl(tO) (47)
S S
x1(to) x1(to)
1/s
1/'s
X1 X1
X2(s) ® X2(s) A
(2) (b)

Fig.4.6. Representations of an integrator in the Laplace domain in a signal flow
graph

The above equation may be represented either by Fig.4.6.a or Fig.4.6.b. A

differential equation that contains no derivatives of the input, as given by:

D"y+a, ,D"'y+a,D y+a,y=u (4.8)
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x Mot x, . ) ALY x g

Example 4: For the following equation find:
yaRy Ay 1

L LC LC
(a) Draw the state diagram. (b) Determine the state transition equation?
Solution:
(a) The state Diagram, Fig. below, includes two integrators, because this is a
second-order equation. The state variables are selected as the phase variables
that are the outputs of the integrators, that is, X;=y and X,= X;.
(b) The state transition equations are obtained by applying the Mason gain

formula with the three inputs u, X;(tp), and X,(to):

s @+sTR/L 2 s?/LC
X,(8) = A(S) Xy (to) + ( ) X, (ty) + AGS) U(s)
X, :s—2/|_c " % (t ‘1/LCU

(s) —A(S) (ty) + ( ) (ty) + A(S) (s)
sTR s
A(S) :1+ +E

The signal flow graph for this system is
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X2(t0) X1(t0)

1/s 1/s

Tis) X1(1) Y(s)

After simplification these equations become

X1(s)
)

X(8)=— 1 {S+R/L 1}{x1(t0)}{1/m}u(3)}
s°+(R/L)s+1/LC || -1/LC S| X,(t)| |s/LC

4.6. Simplification for the system of dual inputs:

X(s):{

According to the principle of superposition theory, we must find the output
by considering one input at a time and cancelled another courses. For the system
Is shown in Fig.4.7, we find C1(s)/R(s), and then C,(s)/D1(s), and C3(s)/Dy(s),
the final output of system is achieved by summation of these three inputs;
C=Ci+ Cy+ C;

R(s) + Cf(s)

Gi(s) Gs)

H(s) Hy(s)

Dy(s)

Fig.4.7. Block diagram for dual inputs control system.
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Let D1(s)=0 and D2(s)=0, Hence the system becomes; the transfer function for

this block is ;

R(s) +
Gi(s)

C
>| Gy e

H,(s)

Hi(s) €=

Ci(s) _ G, (8)G; (s)

R(S)  1+G,(s)G,(S)H,(S)H 4 (S)

Output due to input D1(s):

(4.9)

Let R(s)=0 and D2(s)=0, Hence the system becomes; the transfer function for

this block is ;

Cis)_ Gy(s)
D,(s)  1+Gy(s)H,(s)H,(s)

Output due to input D2 (s):

>

C,
Gifs) 249

Gi(s) [€——

Hys) €& Hs) &t

(4.10)

Let R1(s)=0 and D1(s)=0, Hence the system becomes; the transfer function for

this block is ;
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Cf6)
Hys) = Gis) P Gy o

Hi(s) [«

C;(s) _ —G,(5)G,(s)H,(s)
D,(s) 1+Gy(s)G,H (s)H,(s)

(4.11)

The total output of the system is the summation of outputs with respect to a

corresponding input:

C= C1+ C2+ C3
_ RG;(S)G,(s) % D,G,(s) -\ D,G,(s)G,(s)H,(s)
1+ Gy(S)G, (S)H (S)H,(S)  1+Gy(S)H (S)H,(s) 1+ Gy(S)G,H (S)H,(S)
G@IRG(S) . D -DGSH,)]

=1+G1(S)G2(S)H1(S)H2(S) 1+G(s)H.(s)H,(s) 1+ G(s)G,H,(s)H,(s)

The solution by using signal flow graph:

Firstly draw the signal flow graph diagram for original B.D;

D;(s)

Ris) 1 G,(s) G(s) C(s)

1
P==YPA
A TR

When apply the superposition theory can be get;
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Output due to input R(s):
Let D1(s)=0 and D2(s)=0, the signal flow graph becomes;

L1 Gi(s) GoAs) Cifs,
pa—— >
-H(s) Hy(s)
By apply the Mason's formula:
Py =G, (5)G,(5)
L, =—G,(s)G,(s)H,(s)H,(s)
L,=0
A=1-L; =1+G(5)G,(s)H,(s)H,(s)
A =1

1
Po = (PY)

_G(s) _ G, ()G, (s)
" R(S)  14G,(s)G,(s)H,(s)H,(s)

Output due to input D1(s):
Let R(s)=0 and D2(s)=0, the signal flow graph becomes;

G(s) Cs(s)

Di(s 1
15)) >

-H,(s)H (5) G(s)
P =G, ()
L =-Gy(s)G,(s)H,(s)H,(s)
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A=1-L, =1+ G,(5)G,(s)H,(S)H,(5)
A =1

1
PDl = K(PlAl)

_GCy(s) _ G, (s)
" Di(s)  1+G,(5)G,(S)H,(s)H5(5)

Output due to input D2(S):
Let R(s)=0 and D1(s)=0, the signal flow graph becomes;

, -HA(5) Gi(5) GoS) i)
> >

D(s)

Hi(s)
p, =Gy ()G, (S)H, (5)
L, ==Gy(9)G,(S)H, (S)H, (5)
A=1-L =1+G,(S)G,(s)H,(s)H,(s)
A =1

1
Poz = K (PlAl)

_G(8) _ —G,(5)G,(s)H,(s)
P27 D,(s)  1+Gy(5)G,(s)Hy(S)H,(S)

Potat = Fr + Por + Po;

P G,(5)G,(s) Ry G,(s)
total 1+ G,(S)G,(s)H(s)H,(s) 1+ G,(s)G,(s)H,(s)H,(s) 1
—G,(5)G,(s)H, (s)

1+Gy(5)G,(8)H.(s)H, (s)

2
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C = G, (S)[G,(s)R + D, — =G (s)H,(s) D, ]
146y (5)G,(S)H(s)H,(s)

Note: Where the denominator represents the polynomial of the system
therefore; it has the same form in all inputs affect and in all form where the

polynomial refer to clc's of the system (i.e. A matrix in state space form).

Example 5: Find the T.F for the block diagram shown below?

DJ(S)

s+1/(s*+45+10)

RO n 3 10/(s+10) .

4/(s+16)

Solution:
By using superposition theory:
1. C/R(s) by set D1 and D2=0; the block becomes:

1/s

+ + C(s
Rﬂ) 1 —)O—) 85 10/(s+10) > S+1/(s+45+10) ”)

0.8

A

4/(s+16) |€—

And can be continue with solution by using B.D.R and By using S.F.G. and this
Is a home work. From all the above examples, we can see that all loops and

forward paths are touching in this case.
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As a general rule, if there are no nontouching loops and forward paths in the
block diagram or SFG of the system, then the Mason' gain formula can be
putted in a simplified formula, as shown next.

)

R

forward path gains
1-1loop gains

4.7. Matlab program for signal flow graph

Also all the complex solution can be minimize by using MATLAB with the
following program, for the control system that is shown in Example 5, we can
find the solution by using Matlab program. The following program for MISO
system to get the final transfer function which can be get analytically by block
diagram reduction or signal flow graph.

Program in MATLAB to find T.F. of MISO system:

n1=[1];d1=[1];

n2=[8.5];d2=[1];

n3=[1];d3=[1 0O];

n4=[10];d4=[1 10];

n5=[.8];d5=[1];

n6=[4];d6=[1 16];

n7=[1 1];d7=[1 4 10];

n8=[1];d8=[1];

n9=[1];d9=[1];

nblocks=9;

blkbuild;

qg=[1000

21-60

32-58
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42-58

5349

6700

7349

8000

9000];

u=9;

ly=7;

[ac,bc,cc,dc]=connect(a,b,c,d,q,iu,iy);

[num,den]=ss2tf(ac,bc,cc,dc,1)

printsys (num,den)

%i/p R & O/P C

% 4.2633e-014 s"4 + 93.5 "3 + 1674.5 s"2 + 2941 s + 1360

T .F. R/ C= mmmm e m oo oo e e
% s"5 + 38.8 sM + 458 s"3 + 2085.2 s"2 + 4314 s + 1620

%i/p D1 & O/P.C

% 2.8422e-014 s" + 11 s"3 + 197 s"2 + 346 s + 160

00 T.F C/D L= mmm e e e e e e e
% s"5 + 38.8 s + 458 s"3 + 2085.2 s"2 + 4314 s + 1620

%i/p D1 & O/P C

% s"4 + 27 s"3 + 186 s"2 + 160 s - 1.728e-011

00 T.F. D2/C -mmmmmmm e e oo e e e e e
% s"5 + 38.8 s™ + 458 s"3 + 2085.2 s"2 + 4314 s + 1620
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L_ecture No. Five

Transient Response

Analysis

This lecture will discusses the following topics

5.1.

Analysis of typical control system.

5.2.  Samples of systems Response.
5.3.  Test inputs.
5.4.  Second —order systems and T.R. specifications.
5.5.  Parameters of transient-response. —

N\ o \j =
S ¥ =

5.6.  Solved problem. Prof. Dr

Yousif AL Mashhadany
U. O: Anbar
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5.1. Analysis of a typical control system
. o . . dx(t)
Consider a first differential equation it +ax(t) =u(t)

This may be the equation of a physical system with input u(t) and output x(t)
I)function ) is that part of t response which occurs near t =0 and then decays

this part of t response is due to the characteristics of the system only .

I1) Steady state part (s.s) (particular integral) is that part of the response which
Is present throughout the period t=0 to t=.but at t  this the complete solution

because the transient part is absent.

The nature of steady state response depends of external input only .complete

solution=Tr part +S.S part

1) Auxiliary equation (characteristic equation): m+a=0=m=-a
Transient part Ae

i) Steady state part

let u(t)=U(constant)

% =0 at steady state: aX, =U=X_ =

X(t)=Ae™ + v
a

If we know x(t)=0 at t=0: X (t) = %(1—ea‘)

Att=0, x(t)=0
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at t=o0 , x(t)=U/a
at t=1/a, x(t)=0.63 U/a
T=1/a =time constant (see Fig.5.1)

I=

L e e Y P T oY

a

06325 Lovenen
a

;:l:f
a

Fig. 5.1. Response of first order system
5.2. Samples of systems Response.

) R-C , R-L circuit with constant voltage input.

Voltage
U e
. LR I ;
“ c —— - x(t)
d.c voltage voltage
' ; r
Current
[
i s 1
’ LR _J :
ut) | L ()
d.c voltage | current
M +

| > |

Fig.5.2. Example of RLC circuit with constant voltage input.
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i) A sudden voltage applied an electric oven.

Source
_J

Q&_-i zven

i)  Constant supply voltage switched on to motor.

Speed

°D<t_ speed

Supply motor

OI
All these system may be represented by differential equation of first order.
SUCH SYSTEMS ARE CALLED FIRST ORDER SYSTEMS

Consider a D.C. motor operating with a constant field current i.If the input to

the motor is taken as e, (armature voltage) and the output is taken as speed ®

dw(t)
da(t)

.The differential equation of the motor may be written as :-

e, (t)

+ aw(t) =

Using ‘D’ operator Dw(t) + aw(t) = e, (t)

w® 1
e;(t) D+a
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dao

If we define g as the output variable, w = —

d?6(t do(t
dtg)” d(t):el(t)

D20 + aD = e, (t)

o) 1
e;(t) DD+ a)

p—
i, constant

e.

-

—
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e
1

—¥ D+a
el (6]
—] Motor —>
- [ e.=k6-6)
e “am (
S == '-/d::“. Amp
N
N E
A . Mechanical
grmnmreseseeeeneeene ~ACCOUPIING
g, ii O
+—ii Gears | Motor |e
e, =k -6)

Analysis of a position control system:

e

k=—2
Bi- 0,

e

k=—
emax
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Block diagram:
1 1
@-6,) D(D+a) n
% EJ"l Hm 90

5
M
%

> _‘-1!0}‘0]- — (?(’('H‘S

Y

Simplified block diagram:

1

H <
6 = (k.4 = 1)— i
"D +a)n) DD +a)
Where K = system gain
_ ko
b_ G DD+a) _ K
i 1+GH ;. __ K ~D2+aD+K
D(D +a)

d?0,(t) | d,(t)
TS +a 7t + K6,(t) = k6;(t)
a is parameter of the motor:
1
K=kA—-
n

Where A is amplifier gain and % IS gear ratio.
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5.3. Testinputs
1) Step function: a step is a sudden change in the value of the physical quantity

x(t) from one level (usually zero) to another level, in zero time.

X t>t
X(t) - { x(r)
0 tst | Ideal
Unit step: ™ Practical
1 t>t
U(t) - {0 t S tl o rl —,

Step function at 7,

1) Ramp Function: ramp is a signal which starts from a zero level and

increase linearly with espect to time. :
x(r

I

_(kt  t>0
x(t)_{o t<0

0 —_—

Ramp function at 7=0
1ii) Pulse Function: a pulse may be considered as a step function which is

present for limited period.

x(t) = {x 0<t<T
0 elsewhere
x(1) x(1)
.
X
0 T — 0 T — ¢
Ideal Practical
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Iv)
increased such that.

x(7)

I

(1) &
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Impulse Function: if in the pulse, the width is decreased and the height is

Impulse at =0
/ P

A ()

limr-o x. T = A, the resulting function is impulse A6 (t).

X—00

5.4. Second —order systems

and T.R. specifications.

Differential Equation of the C.L position control system:

d20,(t)
dt?

dé,(t)
dt

+ K6, (t)

For step input, 8,(t) = R,t >

d20,(t)
dt?

dé,(t)
dt

+K6,(t)

Solve the differential equation.

i)
(0p)ss =R
i)

Auxiliary equation:

Transient solution

(characteristic equation)

S.S solution (8,(t) = 6,

= k6;(t)

0

= kR

(t) = 0)

r’+ar+k=0

—atVva?-4k

1”1,1”2 = >
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Case |: The two roots are distinct.

LT, = —ay,—ay ; a® >4k

0,7, = C,e” %t + Cle %2t
o/)Tr o 1

0,(t) =R+ C,e %t + Cle %t

a,(1)
R
\ Response Faster than case I
f
0
Imaginary
L o
Complex plane
3 3% Real
—a, — 0
&,(1)
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Case |1: Repeated Roots.
) T—- - ]
90 (‘f) I \/
t
T, = —a,—a ; a’ =4k
Imaginary
(6o)7r = (Co + Clt)e_at
Complex plane
90 (t) AT R + (CO + Clt)e_at % 5 Real axis
Case 111: Complex Conjugate Roots.
T, =—atjw ;a’ <4k
(6,) 1 = e~ *E(C, coswt + C; sin wt) Imaginary
axis
(0,) 1 = C,e %t sin(wt + C3) ¥ T
Complex plane
0,(t) =R+ C,e *tsin(wt + C3)
LT S - ’ ) Real axis
X
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Response of Position Control System:

) Distinct Roots.

i)  Repeated Roots.
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0,(t) =R+ Cye *1t + (e %2t
0,(t) =R+ (C, + Cit)e *t

iii) Complex Conjugate Roots. 8,(t) = R + C,e *tsin(wt + C3)

Faster Response

Time

—

Under Damped

Decrease the time constant

Over Damped

Frequency of

oscillation

liaginary

«— (Oscillation

Real

Overshoot
90(") 12 - i
Repeated (Critically DAMPED)
R . Jooee
] 8 -
Complex
(Under DAMPED) —
*or ™~ Distinet (OVER DAMPED) 7
D4 -
n2f -
O ] ] ] '} 1 1 L ] L
4] 1 2 3 4 5 B 7 B ] 10
Time

Fig. 5.3. Cases of Response for Control System.
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1. Response becomes faster and faster as the roots moved along the —ve
real axis. The time constant i also decreases progressively.

2. Damping increases as the roots moves away in the —ve real dirction.
3. Frequency of oscillation increases as the roots move away from the real
axis (along the imaginary axis direction).
All control system design methods attempt to shift the roots of the

characteristic equation from an undesirable location to a desirable location.

5.5. Parameters of transient-response.

In many practical cases , the desired performance characteristics of control
systems are specified in terms of time domain quantities .Systems with energy
storage cannot respond instantaneously and will exhibit transient response
whenever they are subjected to inputs or disturbances. Frequently , the
performance characteristics of a control system are specified in terms of the
transient response to a unit-step input since it Is easy to generate and is
sufficiently drastic.(If the response to a step input is known , it is

mathematically possible to compute the response to any input).

The transient response of a system to a unit-step depends on the initial
conditions. For convenience in comparing transient responses of various
systems, it is a common practice to use the standard initial condition that the
system is at rest initially with output and all time derivatives thereof zero.

Then the response characteristics can be easily compared.

The transient response of a practical control system often exhibits damped

oscillations before reaching steady state. In specifying the transient-response
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characteristics of a control system to a unit-step input , it is common to

specifying the following:

1 Delay time , t;

2 Rise time , t,

3. Peak time , t,,

4 Maximum overshoot , M,

5 Settling time , t,

These specifications are defined in what follows and are shown graphically in
fig.

1. Delay time, t, : the delay time is the time required for the response to reach

half the final value the very first time.

2. Rise time , t, :the rise time is the time required for the response to rise from
10% to 90% ,5% to 95% , or 0% to 100% of its final value. For under-damped
second —order systems, the 0% to 100% rise time is normally used. For over-

damped systems, the 10% to 90% rise time is commonly used.

3. Peak time, t,,: the peak time is the time required for the response to reach

the first peak of the overshoot.

4. Maximum (percent) overshoot, M, : the maximum overshoot is the
maximum peak value of the response curve measured from unity. If the final
steady-state value of the response differs from unity, then it is common to use
the maximum percent over-shoot. It is defined by

c(tp)—c(e)

() X 100%

Maximum percent overshoot =
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The amount of the maximum (percent) overshoot directly indicates the relative
stability of the system.

6. Settling time , t,:the settling time is the time required for the response curve
to reach and stay within a range about the final value of size specified by
absolute percentage of the final value (usually 2% or 5%). The settling time is
related to the largest time constant of the control system .Which percentage
error criterion to use may be determined from the objectives of the system
design in question. The time-domain specifications just given are quite
Important since most control systems are time-domain systems; that is , they
must exhibit acceptable time responses. (This means that the control system
must be modified until the transient response is satisfactory). Note that if we
specify the values of ¢,4,t,,t,, ts and M, , then the shape of the response
curve is virtually determined. This may be seen clearly from Fig.5.3. Second-
order systems and transient-response specifications. In the following , we shall
obtain the rise time, peak time , maximum overshoot, and settling time of the
second-order system given by Equation below. These values will be obtained

in terms of { and w,,.The system is assumed to be under-damped.

Rise time t,:Referring to Equation, we obtain the rise time t, by letting

c(t,)=1or

c(t,) =1=1—e $Wnlr(coswyt, + sinwgt,)

i
J1-—2¢2
Since e~$Wntr = 0, we obtain from Equation the following equation:

coswgt, + Lsin wat, =0

1-2
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72
Or tanwgt, = —%{z —%

Thus ,the rise time ¢, is

t, = —tan~1(

Where B is defined in fig. clearly for a small value of ¢, , w; must be large.

el |
Allowable tolerance

._.
=
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|
|
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Fig. 5.4. Transient Response Parameters

Peak time , t,: Referring to Equation , we may obtain the peak time by

differentiating c(t)
with respect to time and letting this derivative equal can be simplified to

dc ot
— = (wype Y (coswyt +

sinw,t
T at)

¢
i

+e$@nt(w, sinwyt — cos wgt)

{wgq
Nre
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and the cosine terms in this last equation cancel each other , dc/dt , evaluated

) For t > t,, response

- remains within this strip.
|
My /\ unﬂ
‘I I

i : \Th/ ified. TR o
1 nis & —
- A)I,_/_I" ESEPDI Qlan pecil wm]t_{'

: H - —o-‘ (i =

] (I P I t

]
]
]
|
L

Fig. 5.5. Transient — response specifications and definition of the angle

dc Gsi £) Wy
= = (sinw ——
dtle=¢, il = {?

e~S@ntp =
This last equation yields the following equation :
sinwgt, =0
Or  wgt, = 0,m,2m,3m, ...

Since the peak time corresponds to the first peak overshoot,

wqt, = 1. Hence

The peak time t,, corresponds to one-half cycle of the frequency of damped

oscillation.
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Maximum overshoot M,: The maximum overshoot occurs at the peak time

oratt =t, =m/w, .Thus, M, is obtained as

T
M, =c(t,)—1= —e_zw"(w_d)(cosn + Lsinn

1-2
—] _e_(o'/wd)ﬂ — e_(z/\/ 1_62)77
The maximum percent overshoot is e ~(°/@d™ x 100%.

Settling _time t.: For an under-damped second-order system, the transient

response is

e ¢@nt 1-¢2

———sin(wg4t + tan™?
=

C(t) =1- T
The curves 1+ (e~$¥ntv1=¢*/) are the envelope curves of the transient

) ,fort =0

response for a unit-step input. The response curve c(t) always remains within a
pair of the envelope curves , as shown in Fig. below. The time constant of

these envelope curvesis 1/{w,. .

The speed of decay of the transient response depends on the value of the time
constant 1/{w,,. For a given w, , the setting time ¢t is a function of the

damping ratio ¢.
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5.6. Solved problem
Prob.1. A field controlled d.c motor is characterized by the following
differential equation.

dw(t) .
0.5 T + W(t) = 1.57lf(t)

Where, w(t) is the angular velocity of the motor in radians/second and if is the
field current in mA.
a)if the motor is supplied with a step input of 100mA what is the steady state

speed in r.p.m.

atS.s ——>  w=0

rad .
Wee = 1.57 * 100 = 157 la constant
second i
60 Electronic 3% e
== — . dL B .1 | Amplifier |t .
157 2T e 1 Gain=1000 Motor
= 1499.23 r.p.m
i 1 i Te 1 g K ¥
b)in () how much time would be hl;“fogg*i*;j‘n

taken by the motor to reach 1)25% , i1)50% and iii)75% of the steady state
speed?

Characteristic equation

(0.5m+1)=0

m= -2

wr, = Ae 2t

At t=0, w(0)=0

0=157+A

A=—157

w(t) = 157 * (1 — e~ %)

) w(t;) = 25% of the S.S speed (157 rad/second)
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25 “,|'('f’:)
* h
100

157 =
157 =
(1-

e ) =

t1=
0.1438 sec

150_00 x157 =157+ (1 —e™?%2) = t, = 0.3466 sec

% *157 =157+ (1 —e7%%3) = t, = 0.6931 sec

c)The above motor is used in a speed control scheme as shown in figure
bolow.

Draw the block diagram of the system and write down the differential
equation of the closed loop system. Given that field resistance =100,
inductance 20H.

) M

Reiy + 1,
€ = Rrlr T hr oy
er = 100 * i + 20Di;

y__ 1 _ 1000
e,  100+20D 100+ 20D
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from system equation.

(0.5D + Dw = 1.57i;

w 1.57

. 14.992
— = in rad/second =
lf 0.5D+1 0.5D+1

inr.p.m

d) calculate the setting of the potentiometer to get a steady state speed of

1) 900 r.p.m
i) 1100
1000 14,992
r.p.m 1000 30D +100 (0.5D+1)
€ ) If w(t)
Amp | Field »| Motor >
mA I.p.m
Tachole
volts
1000 14.992 1499200

G = 1000 =

20D + 100 05D+ 1 (D +2)(D +5)
H=0.005 volt/r.p.m

wit) G 1499200
e,(t) 1+GH D2+7D+ 7506

d?w(t) dw(t)
+7 + 7506 w(t) = 1499200 e, (t)
e, (t) dt

Differential Equation of the C.L system
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) Forw(t)|izeo =900 7.p.m
D =D? =0 atsteady state

1499200
7506

w(t)ss = 900 = e,
e, = 4.506 volts
Potentiometer factor =0.4506

i) Forw(t)ss = 1100 r.p.m e, = 5.507 volts

Potentiometer factor =0.5507

if the amplifier gain suddenly decreases by 25% what would be the
range in the motor speed if it was earlier running at 900 r.p.m. when

the motor is running at 900 r.p.m
e, = 4.506 volts
Amplifier gain=750

w(t) 1124400
e,(t) DZ+7D + 5632

_ 4.506%1124400

AtSS w(t)|tzew = ceas = 899.6 r.p.m

137




Control Theory |
Prof. Dr. Yousif Al Mashhadany
2021 - 2022

University of Anbar
College of Engineering
Dept. of Electrical Engineering

Prob.2. A small electric oven is known to have a first order differential
equation as its describing equation. when the rated input of 20 volt is applied
to the oven at 25°C, the steady state temperature is found to be 1225°C and a

temperature of 625°C is reached in 30 seconds.
a) Write down the differential equation of the oven.

General first order differential equation.

dT(t)
dt

+ aT(t) = be,(t)
Oven Oven
Temperature Voltage
t=0 , T=25°
t=30, T=625°
t=c0 , T=1225°

b
TSS = Eel 7 TtT = Ae_at

b
Trotar = Ae™% +—¢,
a
Initial condition at t=0 , T(t)=25

b b
25=A+—61, A=25——61
a a

(t) = (25——8) e % 4 —¢
| *
1 1
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At t=00 (steady
state); Input 4 o
command + Tempelatlue
Amplifie—{ Oven >
200 S1v/C
Transducer Thermo-
Amplifier coup[e

T(t)=1225°C
b
1225 = —20
a
At =30, T(t)=625
b b
625 = (25 - —20) xe730a 4 —20
a a

625 = (25 — 1225) * e~3%2 4+ 1225
a=0.0231049

b=1.4151755

Oven equation is

dT (t)
— =t 0.023T(¢t) = 1.415e, (%)

b) it is now required to control the temperature of the oven by a close loop
feedback system as shown in figure below. Obtain the differential equation of

the overall system.

139




Control Theory |
Prof. Dr. Yousif Al Mashhadany

University of Anbar
College of Engineering

Dept. of Electrical Engineering 2021 - 2022
A—1.14
e,=lv 7 _Change T
Temperature ! .
E —— —»
Regulator

1.415

_ = -6 — 10-3
G AD+O.023 ;H=5%107°%200 =10

T@®) G- 1.4154
e, 1+GH D+0023+A%1.415%1073

c)calculate the value of ‘A’ such that if ‘A’ increases by 10% the steady state

change in the oven temperature does not exceed 0.5°C for e; = 1 volts
Tl 3 Tz - 05

1415 1.1*A 1415+ A

— = 0.5
0.023+1415%x1.1*1073*A 0.023 % 1.415%x1073 x4

1.10122375 * A* + 34.172251 * A + 264.5 = 3254.5 % A

1.10122375 * A* — 3220.32775 * A + 264.5 = 0

4= 3220.3277 +/(3220.3277)%2 — 4 * 1.10122375 = 264.5
N 2 %1.10122375

A=2924.158

d) Calculate the time constant of the closed loop system for the value of ‘A’
calculated in part (c).

T(t) 1.4154 K
e, D+0023+A%1.415%x10"3 (D +a)
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a = 0.023 +2924.153 * 1.415 * 1073 = 4.160676

Time constant=T = £ = 0.240345 sec

a

e)what is the range of input command in volts required for controlling the
temperature from 100°C to 1000°C.

1.415%2924.153 __ 4137.676496

At S.S T = 81 - 81
0.023+2924.153%1.415%10~3 4.1606764

T = 994.472 % e,
at T=100

100=994.472%¢, , e, = 0.100555 volt

at T=1000

1000 = 994.472 e, , e, = 1.00555 volt

The range of input command is 0.100555 < e; < 1.00555
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Prob. 3: .For the system shown in Fig. below where { = 0.6 and w, =
5rad/sec. Let us obtain the rise time t,,peak time t,,maximum overshoot

M,,, and settling time t; when the system is subjected to a unit-step unit.

R(s) + w2 C(s)
s(s+2¢w,)

Solution:
From the given values of ¢ and w,, , we obtain

wg =wp1—0?=4 and ¢ = {w, = 3.

Rise time t..: The rise time is

eeft =l 3.14—F
X Wq s 4

ty
where [ is given by
W4 4
—tan"!'— =tan"' == 0.93 rad
f — tan = anT 2 ra

The rise time t,. is thus :

3.14 - 0.93
t, = . IDA = 0.55 sec
peak time t,,: The peak time is
T 3.14
tp = w—d = T = (0.785 sec

Maximum over shoot M, : The maximum overshoot is
Mp — e—(a/a)d)n — e—(3/4—)><3.14 = 0.025

The maximum percent overshoot is thus 9.5%
Settling time_tg: For the 2% criterion , the settling time is

For the 5% criterion
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Lecture No. Six

Steady-State Error

This lecture will discusses the following topics

6.1. Introduction.

6.2.

Steady-State Step Error Coefficient.
6.3.

Comparison between steady state error in open loop

& closed loop system.

6.4. Solved problems

Ik

Prof.Dr-
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6.1. Introduction.

The simple closed-loop feedback system, with unity feedback, shown in Fig.
6.1, may be called a tracker since the output c(t) is expected to track or follow
the input r(t). The open-loop transfer function for this system is (
G(s)=C(s)/E(s) ),which is determined by the components of the actual control

system. Generally G(s) has one of the following mathematical forms:

6(s) = KollATS)ATS)...
(1+Tas)(1+TbS) .....

5(0) < Kb+ TOA+T)... o
SA+T,8)A+T,S).....

_ Ky (A+Ts)A+T,8)......
S (L4 T,8)A+T,S)...n

G(s)

C(s)

Fig. 6.1. Unity—feedback control system
Note that the constant term in each factor is equal to unity. The preceding
equations are expressed in a more generalized manner by defining the standard

form of the transfer function as:

SO e s KOO 62
Where

ai, a,....=constant coefficients

b1, b, ,....=constant coefficients

K = gain constant of the transfer function G(s)

m =0,1,2,.... Denotes the transfer function type
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G'(s) = forward transfer function with unity gain

The degree of the denominator is n=m u. For a unity-feedback system, E and
C have the same units. Therefore, K, is non-dimensional, K; has the

units of seconds-1, K, has the units of seconds-2.

In order to analyze each control system, a “‘type’’ designation is introduced.
The designation is based upon the value of the exponent m of s in
Equation(6.1). Thus, when m=0, the system represented by this equation is
called a Type 0 system; when m=1, it is called a Type 1 system; when m=2, it
Is called a Type 2 system; etc. Once a physical system has been expressed
mathematically, the analysis is independent of the nature of the physical
system. It is immaterial whether the system is electrical, mechanical,
hydraulic, thermal, or a combination of these. The most common feedback
control systems have Type 0, 1, or 2 open-loop transfer functions. It is
important to analyze each type thoroughly and to relate it as closely as
possible to its transient and steady-state solution. The various types exhibit the
following steady-state properties:

Type 0: A constant actuating signal results in a constant value for the
controlled variable.

Type 1: A constant actuating signal results in a constant rate of change
(constant velocity) of the controlled variable.

Type 2: A constant actuating signal results in a constant second derivative
(constant acceleration) of the controlled variable.

Type 3: A constant actuating signal results in a constant rate of change of

acceleration of the controlled variable.

These classifications lend themselves to definition in terms of the differential

equations of the system and to identification in terms of the forward transfer
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function. For all classifications the degree of the denominator of G(s)H(s)
usually is equal to or greater than the degree of the numerator because of the
physical nature of feedback control systems. That is, in every physical system
there are energy-storage and dissipative elements such that there can be no
instantaneous transfer of energy from the input to the output. However,

exceptions do occur.
6.2. Steady-State Step Error Coefficient.

The error coefficients are independent of the system type. They apply to any
system type and are defined for specific forms of the input, i.e., for a step,
ramp, or parabolic input. These error coefficients are applicable only for stable

unity feedback systems. The results are summarized in Table 6.1.

Table 6.1. Definitions of Steady-State Error Coefficients for Stable Unity-
Feedback Systems

Definition _
Error Value of error | Form of input
. of error L3 :
coefficient =) coefficient signal r(t)
coefficient
c(t _
Step (Kp) % Ilmseo G(S) Rou_l(t)
Dc _
Ramp (K.) —(e(t))ss lim,_, SG(s) Ritu, (t)
H (ch)ss H 2 thzufl(t)
Parabolic(K,) 0. lim,_,, s°G(s) e
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The step error coefficient is defined as:

step error coefficient =

steadystate value of outputc(t) . .
P— =K, and implies
steadystate value of acuating signal e(t)

only for a step input, r(t)=Rqu.i(t).the steady state value of the output is
obtained by apply final value theorem.

. i T SGE) Roy i G
C(0)ss =1im, o SC(s) =lim, o[~ G(s) s CIR? G(s) i
Similarly for e(t)ss

_ _ Ykl | etk b 1N
&0 =i, o SC(S) =My ols T 51— Mol g gy Rl

Substitute the above two equation to get step error coefficient

G(s) R
1+G(s). °

. 1
|'ms»o[m Ro]

lims—>0[

step error coefficient =

Since both numerator and denominator of the above equation in the limit can't
be zero or infinity simultaneously, where K_=0,the indeterminate 0/0 or
/oo never occur. Thus this equation reduces to K,. Therefore applying (step
error coefficient =lim ., G(s) = K,) to each type system yields

K,A1+TsS)A+T,9)......
(I+T,8)A+T,S).....

K, =lim, = K, for type zero system

—0

K, = for type one system
K, = for type two system

The ramp error coefficient is defined as:

steadystate derivativeof outputDc(t)

Ramperror coefficient = — =
steadystate value of acuating signal e(t)

\
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Therefore applying (ramp error coefficient =lim_,,sG(s)=K,) to each type

s—0
system yields

K,A+T;s)1+T,9)......

K,=limg,,s
(A+T,8)A+T,9).....

=0 for type zero system

K, = K, for type one system
K, = for type two system

The parabolic error coefficient is defined as:

Parabolicerror coefficient =

steadystate of second derivativeof outputD®c(t)., .
steadystate value of acuating signal e(t).,

a

Therefore applying (ramp error coefficient =lim_,s’G(s)=K_) to each type

s—0
system yields

» K@+ TS)L+T,5)......
(A+T,s)A+T,S).....

K, =lim s =0 for type zero system

K, =0 for type one system

K, = K, for type two system

Table 6.2. below gives the values of the error coefficients for the Type 0,1,
and 2 systems. These values are determined from Table 6.1. The reader should
be able to make ready use of Table 6.2 for evaluating the appropriate error
coefficient. The error coefficient is used with the definitions given in Table

6.1 to evaluate the magnitude of the steady-state error.
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Table 6.2. Steady-State Error Coefficients for Stable Systems

System Step error Ramp error parabolic error
type | coefficient K, | coefficient K, coefficient K,
0 Ko 0 0
1 0 K 0
2 00 o Ks

6.3. Comparison of steady state errors in open loop and closed loop

systems:

Consider the open loop control system and closed loop control system shown
in Fig. 6.2(a,b).

calibration
Ke=1/K plant

Fig.6.2. (a) block diagram of open loop, (b) closed loop system

In the open loop control system the gain Kc is calibrated so that Kc=1/K, thus

the transfer function of open loop control system is:

G(s)—i K _ 1
0 K1+sT 1+sT
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In the closed loop control system the gain K, of the controller is set so that
K K>>1

Assuming a step input, let us compare the steady state errors for those control
systems. For the open loop control system the error signal is:

e(t)=r(t)—c(t); Or

E(s) =R(s) -C(s) ; = E(s) =[1-G,(s)IR(s)

The steady state error in a unit step response is

e, =lim__,SE(S)

SS

e, =1im, o [L-Gy(8)]; = =1-Gy(0)

s—0

Table 6. 3. Steady state error in term of gain K

Step input ramp input | parabolic input
r(t)=1 r(t)=t r(t)=1/2 t*
Type 0 s
yp 1+k o0 o0
system
1
Type 1 i
system
Type 2 E
0 0 k
system

If the Go(0),dc gain of the open loop control system is equal to unity, then the

steady state error is zero. Due environmental change and aging of the
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components, however the dc gain Gg(0) will drift from unity as time elapses
and steady state error will no longer be equal to zero. Such steady state error
will remain until the system is recalibrated see table (6.3).

For the closed loop control system the error signal is:

E(s) =R(s)—-C(s)

1
1+G(s)

Where

KK
G(s)=—2"
1+Ts

E(s) = IR(S)

The steady state error in the unit step response is

e, =lim_,s[ 1 ]1
ss s—0 1+G(S) S
il 1

T146(0)  1+K,K

In the closed loop system, gain K, is set at a large value compared to 1/K.
Thus the steady state error can be made small but not exactly zero.

Let us assume the following variation in the transfer function of the plant,

assuming Kc and K, constant.

K +AK
1+Ts

As an example let us assume that K=10,AK=1 or ,AK/K=0.1. Then the steady

state error in the unit step response becomes
e, =1- 1 (K+AK)=1-11=-01
For the closed loop system, if gain K, is set at 100/K, then the steady state

error in the unit step response becomes

1
eSS =
1+ G(0)
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1
eSS=
1+1iO(K + AK)

1

e, = =0.009
1+110

Thus closed loop control system is superior to open loop control system in the
presence of environmental changes, aging of components and the like, which

definitely affect the steady state performance.

6.4. Solved problems

Prob. 1. A closed loop system as a forward transfer function given by:

k 1

G(s)Et | ey 2 -
() 2s> +16s +16 () s

Evaluate steady state error for input ( r(t)=2+t)); when the gain is equal to

2.2)?
Solution:
k
Open loop T.F.= G(s)*H(s) =
P P >N s(2s° +16s +16)
R(s) =§+12_
S S

ess = ess position + essvelocity
€ss position— ,A=constant

1+Kp

) ) K
Kp=“msaoG(S)=“m > =00
S(2s° +16s+16)

So that
€ss position L = O, A=2

1+
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K, =limg_,,G(s) =lims 5 K =1/4,K=2
s(2s° +16s +16)

e B _1 o

ss velocity KV 1/4 '

e. =€ +e =4+0=4

ss — “ss velocity ss position

Note; these two values cannot be added where everyone represents system

response for certain input.

Prob. 2. Find the steady state errors for the inputs,5u(t),5tu(t) and 5t°u(t) to the

system shown below, the function u(t) is the unit step.

R(s) EG)|  1200:+2) c(s)
G=3)G=4)

For the input 5u(t),the Laplace transform is 5/s, the steady state error will be :

e(0) = e, () = J _Y o X)L S P
e 1+lim,,G(s) ,120%2 1420 21
3*4

For the input 5tu(t),the Laplace transform is 5/s% the steady state error will be

e(oo):eram (oo)z.L:E:OO
P lim,_,sG(s) O

For the input 5t° u(t),the Laplace transform is 10/s°, the steady state error will
be :

10 10

= — =00
lim, ,s°G(s) O

e(oo) = eparabola (OO) =
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Example 3.A unity feedback system has the following forward transfer
function:

_1000(s +8)

G(s) = (s+7)(s+9)

Use Matlab to find K;, e, (c0) and the closed loop poles to check the stability

step
for the system.
numg=1000*[1 8];
deng=poly([-7 -9]);

G=tf (humg,deng);
Kp=dcgain(G)
Estep=1/(1+Kp)
T=feedback(G,1);
poles=pole(T)

H.W. Find the value of K to yield a 10% error in the steady state for a unity
feedback who has the following forward transfer function. Try to write Matlab
code to solve this problem.

G(s) = K(s+12)
(s+14)(s+18)

Answer: K=189
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Lecture No. Seven

Routh’s Stability

Criterion

7.1. Introduction.

7.2. Routh's Criteria Rules.

7.3.  Solved problem for Checking System Stability.

Prof.Dr-

Yousif AL Mashhaaany
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7.1. Introduction.
The response transform X,(s) has the general form given by Equation

(7.1),which is repeated here in slightly modified form. X(s) is the driving

transform.
P ) P(s)X,(s)
XZ(S)_Q(s) Xl(s)‘bnsubn,ls”‘% ...... +bs +b, "

The stability of the response X,(t) requires that all zeros of Q(s) have negative
real parts. Since it is usually not necessary to find the exact solution when the
response is unstable, a simple procedure to determine the existence of zeros
with positive real parts is needed. If such zeros of Q(s) with positive real parts
are found, the system is unstable and must be modified. Routh's criterion is a
simple method of determining the number of zeros with positive real parts
without actually solving for the zeros of Q(s). Note that zeros of Q(s) are poles
of X,(s). The characteristic equation is

Q(s)=hs"+b " +....+bs +h =0 (7.2)

If the bo term is zero, divide by s to obtain the equation in the form of
Equation (7.2). The b's are real coefficients, and all powers of s from s" to s°
must be present in the characteristic equation. A necessary but not sufficient
condition for stable roots is that all the coefficients in Equation (7.2) must be
positive. If any coefficients other than by are zero, or if all the coefficients do
not have the same sign, then there are pure imaginary roots or roots with
positive real parts and the system is unstable. In that case it is unnecessary to
continue if only stability or instability is to be determined. When all the
coefficients are present and positive, the system may or may not be stable
because there still may be roots on the imaginary axis or in the right-half s

plane.
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Routh's criterion is mainly used to determine stability. In special situations it
may be necessary to determine the actual number of roots in the right half s

plane. For these situations the procedure described in this section can be used.
7.2. Routh's Criteria Rules:

The coefficients of the characteristic equation are arranged in the pattern
shown in the first two rows of the following Routhian array. These
coefficients are then used to evaluate the rest of the constants to complete the

array.

Sn bn bn-2 bn_4 bn_6 .......
Sn-l bn_j_ bn_3 bn_5 bn_7 .......
S —liC2 g 0 #C35 000 |

qne di1 d2 O A
S il
s° k1

The constants c1, ¢2, c3, ... etc., in the third row are evaluated as follows:

C, = (bnl)(bnlg —(b,5)(b,)

C,= (b,_)(b,_4) = (b,_5)(b,)
b1
C,= (bn1)(bnsg —(b,_,)(b,)

This pattern is continued until the rest of the c's are all equal to zero. Then the

d row is formed by using the sn-1 and sn-2 rows. The constants are:
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g = Gbg) = (6,,)C,
L C
1

g, = Ci0s) = (B,,)C,s
2 C
1

d. = Cl(bn—7) B (bn—l)c4
i C
1

This process is continued until no more d terms are present. The rest of the
rows are formed in this way down to the sO row. The complete array is
triangular, ending with the sO row. Notice that the s1 and sO rows contain only
one term each. Once the array has been found, Routh’s criterion states that the
number of roots of the characteristic equation with positive real parts is equal
to the number of changes of sign of the coefficients in the first column.
Therefore, the system is stable if all terms in the first column have the same

sign.

7.3.  Solved problem for Checking System Stability.

Prob.1. Check the stability of the control system that it has characteristic
equation in the following:

Q(s)=s> +s* + 10s° + 725 + 152s + 240 ?

Solution:

The Routhian array is formed by using the procedure described above:

s° 1 10 152
st 1 72 240

S® -62 -88
S? 706 240
S 1226
S 240
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In the first column there are two changes of sign, from 1 to -62 and from 62 to

70.6; therefore, Q(s) has two roots in the right-half s plane (RHP).Note that

this criterion gives the number of roots with positive real parts but does not

tell the values of the roots. If the characteristic equation is factored, the roots

are s; = -3,S 5,3 = -lij\/3, and 84,5 = +2 ij\/4. This calculation confirms that

there are two roots with positive real parts. The Routh criterion does not

distinguish between real and complex roots.

Prob.2. Check the stability of the control system that it has the following

characteristic equation(C.E):

CE=s"+3s+2?

Solution:

S’ E2

st 3 0

3*2-0*1 )
3

s° 2

Because no change in the first column (pivoted column), there are no poles in

the right hand side (RHS) and hence the system is stable.

Prob.3. Check the stability of the control system that it has clc's eqgn. in the
following:

Q(s)=s"+3s® + 5"+ 35 + 1?

Solution:

The routh's array:

s“*1 11
S$* 330
s 0 1
S 2?7
S ?
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This is one of the special cases ,so that when we get zero in routh's array to
fill full this theory replace the zero by symbol (6) and then can be determined
the range of stability for this system:

st 111
330
25 1

S (35-3)/5 0
S 0

If we consider & a very small positive number [it has either a very small
positive or a very small negative and this is optional and both of them gives
same final result]

A=(35 —3)/ 6=3-3/ 6

Lim A= 3-00, A= -ve

s—0

This mean, there are two sign changes ( from +ve to —ve and from —ve to +ve)
. In other words two poles in the right hand side of s-plane, therefore the

system is unstable.

Prob.4. The open loop transfer function of a unity negative feedback control
system shown below, find the number of poles in the left half ,right half of s-

plane and on imaginary axis(jw).

128

G S) =
apentoon (8) S(S’ +3S°+10S° +24S* +48S° +96S% +128S +192

Solution:

The characteristic equation of system is
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Q(S)=5%+3S" +10S° + 24S° + 485* +965° +1285> +1925 +128

Routh's table can constructed as follows

s® 1 10 48 128 128
s’ 3 24 96 196 0
S° 2 16 64 128

S® 0 0 0 0

s! ? ? ? ?

s® ?

S? ?

st ?

S° ?

This is the second special case ,when all the row elements are zeros.
To solve this, return to first even polynomial (S°) and form a new polynomial

which is called auxiliary equation as follows:

P(s)=2S°+165" + 645° +128

But the auxiliary equation in the simplest form and this can be done for each
row of the Routh's table.

P(s)=S°+8S" +325% + 64

Next step ,differentiate this polynomial with respect to S to form the

coefficients that replace the row of zeros:

dP(s)
ds

=6S°+325%+64S =0
Now the coefficients of S° in the main table will be as follows:

$° 6 32 64

Then complete the table as in the previous examples. If your calculation is
correct you find two sign changes from the even polynomial(sixth order).

Hence ,the system has two right half plane poles. Because of the symmetry
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about the origin ,the even polynomial must have an equal number in the left
half plane poles. The remaining two will be on J-w axis. There are no sign
change from the beginning of the table down to the even polynomial(sixth
order). Therefore the rest of the polynomial has no right half plane poles.

The final result will be two poles in the right half, four poles in the left half
and two poles on the imaginary axis. Hence the system is unstable.

In the Matlab ,we will come to the closed loop control system and the code

will be as follows:
numg=128;
deng=[131024...
48 96 128 196 0]
G1=tf(numg,deng);
G=feedback(G1,1)
poles=pole(G)
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Prob.5. For the system shown below, find the minimum possible values of K

at which the system is unstable?

R(s K o)
571457 4118 "

Solution:
C.E= 1+0O/L.T.F

Routh's array

s 1 11 0
S? 4 K 0
St (44-K)/4 0
s K

O/L.T.F= G(s).H(s); H(s)=1;

C.E. =1+ K/s’+4s” +11s= s°+4s” +11s+K=0
For stable sys. (44 —-K)/ 4>0

For unstable sys. (44 — K)/ 4 <0

Therefore; the min. value for stable is

K >44.
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Lecture No. Eight

Root L.ocus.

8.1. Introduction.

8.2. General Rules of Root Locus.
8.3. Examples.
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8.1. Introduction.

To facilitate the application of the root-locus method, the following
rules are established for K > 0. These rules are based upon the
interpretation of the angle condition and an analysis of the characteristic
equation. These rules can be extended for the case where K < 0. The rules
for both K > 0 and K < 0 are listed in Sec. 7.16 for easy reference. The
rules presented aid in obtaining the root locus by expediting the plotting
of the locus. The root locus can also be obtained by using the MATLAB
program. These rules provide checkpoints to ensure that the computer
solution is correct. They also permit rapid sketching of the root locus,
which provides a qualitative idea of achievable closed-loop system

performance.

8.2. General Rules of Root Locus.

Rule 1: Number of Branches of the Locus:

The characteristic equation C.E.(s)=1+G(s)H(s)=0 is of degree n=mui;
therefore, there are n roots. As the open-loop sensitivity K is varied from
zero to infinity, each root traces a continuous curve. Since there are n
roots, there are the same numbers of curves or branches in the complete
root locus. Since the degree of the polynomial C.E.(s) is determined by the
poles of the open-loop transfer function, the number of branches of the
root locus is equal to the number of poles of the open-loop transfer
function.

Rule 2: Real-Axis Locus:

In Fig. 1 are shown a number of open-loop poles and zeros. If the angle

condition is applied to any search point such as sl on the real axis, the
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angular contribution of all the poles and zeros on the real axis to the left
of this point is zero. The angular contribution of the complex-conjugate
poles to this point is 360°. (This is also true for complex-conjugate zeros.)
Finally, the poles and zeros on the real axis to the right of this point each
contribute 180° (with the appropriate sign included). From Eq.(1) the
angle of G(s)H(s) to the point sl is given by

B = (angles of denominator terms) — > (angles of numerator terms)
(1 +2m180°7 for K >0
h360° for K <0

Gg + O1 + Oy + b3 + [(Dg)y; + (dg)_] = (Vg + ) =(1421)180°
or 1807 +0"4+0"4+0"+360"— 0" —0" = (1 + 2A)180°

Therefore, sl is a point on a branch of the locus. Similarly, it can be
shown that the point s2 is not a point on the locus. The poles and zeros to
the left of a point s on the real axis and the 360° contributed by the
complex-conjugate poles or zeros do not affect the odd-multiple-of-180°
requirement. Thus, if the total number of real poles and zeros to the right
of a search point s on the real axis is odd, this point lies on the locus. In
Fig.1 the root locus exists on the real axis from p0 to p1, z1 to p2, and p3
to z2. All points on the real axis between z1 and p2 in Fig.1 satisfy the

angle condition and are therefore points on the root locus.
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Fig.1. Determination of the real-axis locus.

However, there is no guarantee that this section of the real axis is part of

just one branch. Fig.2 a illustrate the situation where part of the real axis

between a pole and a zero is divided into three sections that are parts of

three different branches.

Fig.2.
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Rule 3: Locus End Points:

The magnitude of the loop sensitivity that satisfies the magnitude
condition is given by Eq.(3) and has the general form in Eq.(4),

J'H|

|~"‘_ '|~"‘_ p||'|~"‘_ p2||"‘_ pr.r|

K| = S—z1- 15— 2] = loop sensitivity ----- (3)
, . " s Pl

|W(s) = K = l_[; 1 » Fel 8 (4)
[T |'7 zf:|

Since the numerator and denominator factors of Eq.(4) locate the poles
and zeros, respectively, of the open-loop transfer function, the following
conclusions can be drawn:

1) When s=pc (the open-loop poles), the loop sensitivity K is zero.

2) When s=zh (the open-loop zeros), the loop sensitivity K is infinite.
When the numerator of Eq.(4) is of higher order than the denominator,
then s=1 also makes K infinite, thus being equivalent in effect to a zero.
Thus, the locus starting points (K=0) are at the open-loop poles and the
locus ending points (K=1) are at the open-loop zeros (the point at infinity
being considered as an equivalent zero of multiplicity equal to the

quantity n - w).
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Rule 4: Asymptotes of Locus as s Approaches Infinity.

Plotting of the locus is greatly facilitated by evaluating the asymptotes
approached by the various branches as s takes on large values. Taking the

limit of G(s)H(s) as s approaches infinity, based on Egs.(5) and (6), yields

K(s—z)---(s—2z,) KJ[[_,(s—2z)
G(s)H(s) = = L (5)
‘,,]_m(j- ol ) - (_g py} g l_[c | (j_ pﬂ)
Ris—zi)---l8—2) . o
Gis)H(s) = —— 8= 5) _ 6)
sUs=p)---(s—=p,)
n | K
lim G(s)H(s) = lim [K = (s z”)] = lim—=—1 - @)
500 §—00 l_[c 1 (5 —pe) s—ooght—W

Remember that K in Eq.(7) is still a variable in the manner prescribed
previously, thus allowing the magnitude condition to be met. Therefore,

as s —oo, There are n-w asymptotes of the root locus, and their angles

are given by
—K=s""
|—-K| = |s"™] Magnitude condition —(8)

r)

/=K — /5" — (14 2h)180° Angle condition

Rewriting Eq. (9 ) gives (n — w) /5 = (1 + 2h)180° or

(1+2m180° e (9)
VY= as § — oC
n—Ww

(1 4+ 2h)180°
[number of poles of G(s)H(s)] — [number of zeros of G(s)H(s)] ---(10)

hl,lf —
]
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Eq.(10) reveals that, no matter what magnitude s may have, after a
sufficiently large value has been reached, the argument (angle) of s on the
root locus remains constant. For a search point that has a sufficiently
large magnitude, the open-loop poles and zeros appear to it as if they had
collapsed into a single point. Therefore, the branches are asymptotic to
straight lines whose slopes and directions are given by Eq. (10) (see Fig.3).
These asymptotes usually do not go through the origin. The correct real-

axis intercept of the asymptotes is obtained from Rule 5.

} JO
5]=/S_z /L 1
_______ ] | s[5/ 2
s plane 27 :
1 .-"‘j ] I 5X=/SX/LX
"~ Asymptote| | :
o 4\ ] | Sy=ool_ ¥
-~ 4
o~ i | -
o, o
Fig. 3

Rule 5: Real-Axis Intercept of the Asymptotes
The real-axis crossing so of the asymptotes can be obtained by applying
the theory of equations. The result is

Z? 1 Rc(pr_ Z.ﬁ Rc(zfr

n—w

Ga -

The asymptotes are not dividing lines, and a locus may cross its
asymptote. It may be valuable to know from which side the root locus

approaches its asymptote. The locus lies exactly along the asymptote if the
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pole-zero pattern is symmetric about the asymptote line extended through
the point so. Rule 6: Breakaway Point

Rule 6: Breakaway Point on the Real Axis

The branches of the root locus start at the open-loop poles where K=0 and
end at the finite open-loop zeros or at s=1.When the root locus has

branches §in

Inflection

I
I
I
|
I
| poi nt
[
|
|
I

| Wry

Fig.4.
on the real axis between two poles, there must be a point at which the two

branches breakaway from the real axis and enter the complex region of
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the s plane in order to approach zeros or the point at infinity. (Examples
are shown in Fig. 4.a-3: between p0 and p1, and in Fig. 4.b-2: between p2
and p3.) For two finite zeros (see Fig. 4.b-1) or one finite zero and one at
infinity (see Fig. 4.a-1) the branches are coming from the complex region
and enter the real axis. In Fig. 4.a-3 between two poles there is a point s a
for which the loop sensitivity K z is greater than for points on either side
of s a on the real axis.

In other words, since K starts with a value of zero at the poles and
increases in value as the locus moves away from the poles, there is a point
somewhere in between where the K’s for the two branches simultaneously
reach a maximum value. This pointis called the breakaway point. Plots of
K vs. s utilizing Eq.(3) are shown in Fig.4 for the portions of the root locus
that exist on the real axis for K > 0. The point sb for which the value of K
IS @ minimum between two zeros is called the break-in point. The
breakaway and break-in points can easily be calculated for an open-loop
pole-zero combination for which the derivatives of W(s)=K is of the

second order. As an example, if

G(s)H(s) =
()41 s(s4+ 1)s+2)

then @2

. 2 ; ‘=
W(s) =s(s+ 1)(s+2) = —K @»“%M&% e

Multiplying the factors together gives

We)=s +3s5 +2s=—-K ... (11)

When s%+s% +2s is a minimum, -K is a minimum and K is a maximum.
Thus, by taking the derivative of this function and setting it equal to zero,

the points can be determined:
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o Sap=—140.5743 = —0.4257, —1.5743

Since the breakaway point’s s a for K >0 must lie between s=0 and s=-1,

in order to satisfy the angle condition, the value is s, =-0:4257;

The other point, sb=-1.5743, is the break-in point on the root locus forK

<0.

Substituting s,= 0.4257 into Eqg. (11) gives the value of K at the breakaway

Point for K> 0 as

K = —[(—0.426)° + (3)(—0.426)* + (2)(—0.426)] = 0.385

When the derivative of W(s) is of higher order than 2,a digital-computer

program can be used to calculate the roots of the numerator polynomial

of dW(s)/ds; these roots locate the breakaway and break-in points. Note
that it is possible to have both a breakaway and a break-in point between

a pole and zero (finite or infinite) on the real axis, as shown in Figs.4a-1,

7.11a-2,

and 4.b-3. The plot of Kvs. s for a locus between a pole and zero falls into

one of the following categories:

1. The plot clearly indicates a peak and a dip, as illustrated between pl
and z1 in Fig. 4.b-3. The peak represents a ‘maximum’ value
of K that identifies a break-in point.

2. The plot contains an inflection point. This occurs when the breakaway
and break-in points coincide, as is the case between p2 and z1 in
Fig. 4a-2.
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3. The plot does not indicate a dip-and-peak combination or an inflection

point. For this situation there are no break-in or breakaway points.

The next geometrical shortcut is the rapid determination of the direction

in which the locus leaves a complex pole or enters a complex zero.

Although in Fig.5.a complex pole is considered, the results also hold for a

complex zero.

In Fig.5.a, an area about p2 is chosen so that 12 is very much smaller than

10, 11, I3, and (I )1. For illustrative purposes, this area has been enlarged

many times in Fig.5b. Under these conditions the angular contributions

from all the other poles and zeros, except p2, to a search point anywhere

in this area are approximately constant. They can be considered to have

values determined as if the search point were right at p2.Applying the

angle condition to this small area yields
Gy + ¢y +dy+ 03—y = (14 20)180°

or the departure angle is
by, =(1+2m)180" — (g + ¢y + 90" — ;)

¢'1n 4 Jw
.
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W
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In a similar manner the approach angle to a complex zero can be
determined. For an open-loop transfer function having the pole-zero
arrangement shown in Fig.6, the approach angle c1 to the zero z1 is given
by Uy, = (dg + &y + &y —90°) — (1 +2k)180°

In other words, the direction of the locus as it leaves a pole or approaches
a zero can be determined by adding up, according to the angle condition,
all the

angles of all vectors from all the other poles and zeros to the pole or zero

in question. Subtracting this sum from (1+2h)180° gives the required

direction. .
” djw
51;%‘;\—1 s plane
4 | \:x
s S e
A, | e |
| L % L .
|
|
y=90° YRV
2
Fig. 6

Rule 7: Complex Pole (or Zero): Angle of Departure:

The next geometrical shortcut is the rapid determination of the direction
in which the locus leaves a complex pole or enters a complex zero.
Although inFig.7.a complex pole is considered, the results also hold for a
complex zero.

In Fig. 7.a, an area about p2 is chosen so that 12 is very much smaller than
10, 11, I3, and (I) 1. For illustrative purposes, this area has been enlarged
many times in Fig. 7.b. Under these conditions the angular contributions
from all the other poles and zeros, except p2, to a search point anywhere
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in this area are approximately constant. They can be considered to have
values determined as if the search point were right at p2.Applying the
angle condition to this small area yields. In a similar manner the
approach angle to a complex zero can be determined. For an open-loop
transfer function having the pole-zero
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Fig. 8. Angle condition in the vicinity of a complex zero.
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Arrangement shown in Fig.8, the approach angle c1 to the zero z1 is given
by
Uy, = (g + &1 + &y —907) — (1 + 2A)180°

In other words, the direction of the locus as it leaves a pole or approaches
a zero can be determined by adding up, according to the angle condition,
all the angles of all vectors from all the other poles and zeros to the pole
or zero in question. Subtracting this sum from (1+2h)180 gives the
required direction.

Rule 8: Imaginary-Axis Crossing Point:
In cases where the locus crosses the imaginary axis into the right-half s

plane,

the crossover point can usually be determined by Routh's method or by
similar means. For example, if the closed-loop characteristic equation
D1D2+ N1N2=0 is of the form.

s+ b +es+Kd=0

the Routhian array is

s )1 c
st | b Kd
s'| (be — Kd)/b

s'| Kd

An undamped oscillation may exist if the s_1 row in the array equals zero.
For this condition the auxiliary equation obtained from the s 2 row is

bs* + Kd = 0

and i1ts roots are

. |Kd .
S1.2 = i.f-.‘,- B jo. (12)

The loop sensitivity term K is determined by setting the s1 row to zero:

K =bc/d
For K > 0, Eq. (12) gives the natural frequency of the undamped
oscillation. This corresponds to the point on the imaginary axis where the
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locus crosses over into the right-half s plane. The imaginary axis divides
the s plane into stable and unstable regions. Also, the value of K from Eq.
(K =bc/d) determines the value of the loop sensitivity at the crossover
point. For values of K < 0 the term in the sO row is negative, thus
characterizing an unstable response. The limiting values for a stable
response are therefore
0 <K <bc/d

In like manner, the crossover point can be determined for higher-order
characteristic equations. For these higher-order systems care must be
exercised in analyzing all terms in the first column that contain the term
K in order to obtain the correct range of values of gain for stability.

Rule 9: Intersection or Non-intersection of Root-Locus Branches:
The theory of complex variables yields the following properties:
1. A value of s that satisfies the angle condition of Eq. (1) is a point on the
root locus. If dW(s)/ds # 0 at this point, there is one and only one branch
of the root locus through the point.
2. If the first y_1 derivatives of W(s) vanish at a given point on the root
locus, there are y branches approaching and y branches leaving this
point; thus, there are root-locus intersections at this point. The angle
between two adjacent approaching branches.*igﬁiven by

h,=+—

¥

Also, the angle between a branch leaving and an adjacent branch that is
approaching the same point is given by 180°
Fig. 9. illustrates these angles at s=-3 ,with 0y=45° and ALy=90°.

4 pea

£ plane

o (¥

Fig. 9. Root locus for

K
(s +2)s+ 4)s2 + 6s+ 10)

L1O

G(s)H(s) =
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Ex.(1).
Find C(s)/R(s) with [ = 0.5 for the dominant roots (roots closest to the
imaginary axis) for the feedback control system represented by

K,

(7(5) = Hs)l= —
)= T2600 1526+ 1) )= 004 + 1
Rearranging gives
_ 2600K, N, 25 A,
=7+ 100s+ 26000 D, " ® =355 D,
Thus
- 000 )
G(s)H(s) = 63,0004, R

S5+ 25)(5° + 1005+ 2600) s5° + 1255 + 51005° + 65.000s
where K= 635,000K,.

l. The poles of G(s)H(s) are plotted on the s plane in Fig. below
the values of these poles are s=0,—25 —50+,10, —50 —;10.

& four
5 X P2 i & plame
[1]
K u =
PR S
> P3
D
Location of the breakaway point.
L few
"':‘ ‘\?j'" ' s plane
—— o,
NG T N ,
¢ ) d
32

Determination of the departure angle.
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The system is completely unstable for K < 0. Therefore, this
example is solved only for the condition K > 0.
2. Thereare four branches of the root locus.
The locus exists on the real axis between 0 and —25.
4. The angles of the asymptotes are
(1 +2m)180°
o 4
5. The real-axis intercept of the asymptotes is

S [ e
&, o 450 50 _ 3125

6. The breakaway point s, on the real axis between 0
and —25 is found by solving d W(s)/ds = 0

—K = 5* + 1255 + 5100s% + 65,0005

d‘;SK) — 45° 4+ 3755% + 10,2005 + 65,000 = 0

S, = —9.15

-

— 445°, +135°

7. The angle of departure ¢3, from the pole —50 +; 10 is obtained from

bo + d1 + 2 + ¢3, = (1 + 2A)180°
168.7° + 158.2° +90° + ¢;, = (1 + 2A)180°
¢)3D — 1231&

Similarly, the angle of departure from the pole —50 410 is —123.1°.

8. The imaginary-axis intercepts are obtained from

C(s) 2600K, (s + 25)
R(s) '+ 1255 + 51005 + 65,0005 + 65,000K,

The Routhian array for the denominator of C(s)/R(s), which is the
characteristic polynomial, is

5100 65.000K,
520 (after division by 125)
14.2K, (after division by 4580)

Now e

o -

—M-——

b b

0 — 14.2K,
2

2
42K,
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. . . 1 . .
Pure imaginary roots exist when the s° row is zero. This occurs

when K; = 520/14.2 = 36.6. The auxiliary equation is formed
from the s* row:

Sl "" [4.2K| — n
and the imaginary roots are

s=4j /142K, =+j/520=+/228

Additional points on the root locus are found by locating points
that satisfy the angle condition

fsy [s+25 o [/s+50—j10 , /s+50+/10
= (1 +2m)180°

The root locus is shown in Fig.10

The radial line for L = 0.5 is drawn on the graph of Fig. 10 at the
angle

n=cos ' 0.5=60°
The dominant roots obtained from the graph are
f12 = —6.6 :l:j]. 1.4

11. The gain is obtained from the expression

K = 65,000K, = |s| - |s + 25| - [s + 50 — j10] - |s+ 50 + j10|
Inserting the values; = —6.6 4 j1 1.4 1nto this equation yields

K = 65,000K, = 598,800
K =925
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x plane

. 65.000K,
Fig 10. Root | for G(s)H(s) = )
ig oot locus for Gis)H(s) S(s + 25)s2 + 100s + 2600)

The other roots are evaluated to satisfy the magnitude condition K =
598,800. Theremainingroots of the characteristic equation are
S34 = —55.9+/18.0

The real part of the additional roots can also be determined by
using the rule from Eq. (7.68):

0 — 25 + (=50 4 10) + (—50 — j10)

=(—6.6 +j11.4) +(—6.6 —j11.4) + (c +jo ) + (o — jo,)
This gives o = —55.9

By using this value, the roots can be determined from the root
locus as —55.9 £+ 18.0.

The control ratio, using values of the roots obtained in steps 10
and 12, is

C(S) —= IV'] D:J_
R(s) factors determined from root locus

1

T (s 4+ 6.6 +11.4) s+ 6.6 —j11.4)
24 .040(s + 25)

“5+559 +/18)(s +559 - /18)
24,040(s +25)

T (s2 4 13254 173.5)(s% + 111.8s + 3450)

-
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Ex.(2). Plot Root Loci for system shown below:
R(s) Tt 3 C(s)
K(5 + 2) |t m
Solution:
jo |
K=0.0718
e jl
K=14
&AL } .
A 0 a
§=-2.366 P34
-
- _jz
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Ex.(3). Plot the root loci for the system has the following T.F:

G(s)H(s) = S

Solution:

K+ 1)

(s — 1)(s* + 45 + 16)

Jeor §

§=-2.26

0=54.5°

184
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Ex.(4). Plot Root Loci for system shown below:

K
s(s% + 65 +25)

Solution:
+ | P
-7 -6 o
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Ex.(5). Plot Root Loci for system shown below:
R(s) K(s2 + 25 +4) C(s)

S5 +4) (5 +6)s2+ 145+ 1)

Solution:
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EXx.(6). Plot the root loci for the system has the following T.F:

{ j { j K{Sz—l}
( 2 1]( 2 )

Solution:
Asymptotes: K > 0: 9% °, 270" K<0: o
-1+
Intersect of Asymptotes: o = =0
' g
Breakaway-point Equation: s =25 —9s5=0
Breakaway Points: =207, 207, -—j147, j147

0 .. JIm =&,
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Ex.(7). Plot the root loci for the system has the following T.F:
K(s+1)s+2)s+3)

o ;
Solution: s (s—1)

Asymptotes: K= 0: 180 K<0: 0

Breakaway-point Equation: s +12s° +27s" 425 —18 5" =0
Breakaway Points: —121, —-24 -907, 0683, 0, 0

k>0 e.e . |Im e.

——

-11.0 -10.0
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